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ABSTRACT

Data collections in the car environment require much more effort
in terms of cost and time as compared to the telephone or the office
environment. Therefore we apply supervised database adaptation
from the telephone environment to the car environment to allow
quick setup of car environment recognizers. Further reduction of
word error rate is obtained by unsupervised online adaptation dur-
ing recognition. We investigate the common techniques MLLR
and MAP for that purpose. We give results on command word
recognition in the car environment for all combinations of data-
base and online adaptation in task-dependent and task-independent
scenarios. The possibility of setting up speech recognizers for the
car environment based on telephone data and a limited amount of
adaptation material from the car environment is demonstrated.

1. INTRODUCTION

Automatic speech recognition offers increased safety and user
comfort through hands-free and eyes-free operation of the car
functionality and communication/entertainment equipment. How-
ever, despite remarkable progresses in the past years, environmen-
tal noise is still one of the most challenging problems for reliable
speech recognition. As is the case with many real life problems
there are two ways to handle them: getting rid of them or trying to
adapt. In the literature we find these two approaches (and combi-
nations thereof) applied to the problem at hand: reduce the noise
during the feature extraction (e.g. spectral subtraction [1]) or adapt
the acoustic models (usually HMM’s) to the noisy environment.
In this paper we concentrate on the second approach. A trivial
way to obtain environment adapted HMM’s is to use training data
collected in the target environment. While this leads to minimal
error rates, the cost for the data collection is in many cases pro-
hibitive. Further, it is not always possible to predict the precise
noise conditions where the recognizer will be used, i.e. it is impor-
tant that the system is able to adapt to its environment while being
in operation. Much research has therefore been devoted on how
to modify the parameters of a HMM which was trained in a clean
environment such that it works well under noise. Good results
have been achieved by a technique called parallel model combi-
nation (PMC) see e.g. [2, 3, 4, 5, 6, 7]. However to avoid train-
ing of separate noise models and the computational complexity in
PMC, in this paper we use the well known MLLR [8] and MAP
[9, 10] algorithm to adapt HMM’s trained with telephone material
to the car environment. We consider both supervised adaptation
(in the following calleddatabase adaptationusing a small data-
base of speech material collected in different cars and by differ-
ent speakers as well as unsupervised adaptation (in the following

calledonline adaptation) to a concrete car and speaker while the
recognizer is in use. As database adaptation requires the collec-
tion of car speech material we investigate how much adaptation
material is required in order to obtain comparable results to train-
ing exclusively on pure car material. Further, we have to distin-
guish whether the adaptation material and the test set are from the
same application domains (task dependent adaptation) or not (task
independent adaptation). Task independent adaptation leads usu-
ally to higher error rates than task dependent adaptation but is the
method of choice when new speech applications are developed for
which no specific speech data is available. Similar experiments
were conducted e.g. in [7] using PMC, however instead of real car
speech data a synthetic addition of car noise and clean speech was
used, which is only an approximation to the real environment.

In our experiments we employ the Philips continuous speech
recognition system as described in [13] with a nonlinear spectral
subtraction enhanced front-end [11, 12]. Maximum likelihood lin-
ear regression [8] proves to be very powerful for both database
and online adaptation due to its generalization capabilities. MAP
[14] seems to be more sensitive to the choice of parameters than
MLLR. Best results are obtained by a proper combination of both.

Section 2 briefly reviews the adaptation framework for MLLR
and MAP employed for database and online adaptation. The ex-
perimental setup and the utilized databases are described in Sec-
tion 3. After presentation of the experimental results in Section 4
and their discussion we finish with a short conclusion and future
perspective in Section 5.

2. REVIEW OF MLLR AND MAP ADAPTATION

This section contains a brief review of the MLLR (maximum like-
lihood linear regression) and MAP (maximum a posteriori) adap-
tation method. In our experiments we use a simplified version of
MLLR and MAP in the sense that only the mean vectors of the
HMM emission distributions are adapted but not the covariances
or other parameters and only a single MLLR regression class is
used [15]. For a more general definition of the methods see e.g.
[8, 9, 16, 10, 14, 17].
MLLR. A MLLR adaptation step consists of the estimation of a
linear affine transformA; b and its application to all emission dis-
tribution means�:

�new = A�old + b:

The linear transform is given by
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whereN is the number of observation vectorsoi and correspond-
ing augmented mean vectors~�i = [1; �Ti ]

T . This transform is
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MAP. A MAP adapted mean vector is a weighted average of the
prior mean and the mean of the adaptation observations:
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The parameter� defines the “adaptation speed”, i.e. the weight of
new observations�obs as compared to the old estimation�old.

In both methods the correspondence between observation and
mean vectors is obtained by Viterbi alignment.
MLLR + MAP. When comparing MLLR and MAP one often finds
that MLLR works well already for few observations whereas MAP
is asymptotically better. This can be explained by the global trans-
form of MLLR, which results in an adaptation of all mean vectors,
even if few or no observations of a particular mean vector are avail-
able. On the other hand, as a global transform is a rather coarse
approach, MAP is more accurate in the presence of many observa-
tions. In the experiments reported below the following combina-
tion of MLLR and MAP is applied:

�new =
N�

N�+ 1
�obs +

1

N�+ 1
(A�old + b):

A MLLR+MAP adaptation step is carried out at the end of each
utterance. However, as the reliable estimation of an MLLR trans-
form requires a certain amount of observations, a parameterNobs

is introduced and the first MLLR adaptation is applied only after
Nobs observations.

The same adaptation algorithm is used for database and online
adaptation. The essential difference between database and online
adaptation is that for database adaptation the correct transcription
is known (supervised adaptation) whereas online adaptation relies
on the recognition result (unsupervised adaptation) and therefore it
can happen that a wrong transcription is used for online adaptation.

3. EXPERIMENTS

We utilize the SpeechDat [18] database for the telephone envi-
ronment and the MoTiV Car Speech Data Collections (CSDC)
database [19] for the car environment. MoTiV [20] is a project
funded by the German Federal Ministry of Education, Science, Re-
search and Technology focusing on mobility and transportation in
intermodal traffic systems. Automatic speech recognition as part
of a user-friendly human-machine interface is one of the subpro-
jects. Our interest in this investigation is to study how telephone
databases can be used as starting point for the development of au-
tomatic speech recognizers for the car environment. We will in-
vestigate the following scenarios:

� Task- and environment dependent adaptation in the car (Ta-
ble 2 upper block)

� Task-independent and environment dependent adaptation in
the car (Table 2 middle block)

� Task-independent and environment in-dependent adapta-
tion (telephone! car, Table 2 lower block)

In all three cases we will combine database adaptation with on-
line adaptation. Online adaptation in our experiments is unsuper-
vised adaptation of the references at the end of each sentence with
a combination of MLLR with one regression class and MAP. Pre-
liminary investigations have shown that the MAP movement factor
� has the main influence on the adaptation performance. The set-
tings of MLLR (one regression class andNobs = 400) could be
fixed and were found to be quite robust. For database adaptation
MLLR is always applied. In online adaptation all combinations
(also excluding one of the methods) are investigated.

Training of the telephone recognizers is done on the Speech-
Dat phonetically rich sentences combined with command word
phrases (tel phon, 600 speakers, 11 sentences each). Car environ-
ment references are trained on isolated command words (car cmd,
116 speakers in 3 cars, 43 utterances each, 43 words in total) or
phonetically rich sentences (car phon, 205 speakers in 3 different
cars, 9 sentences each).

Database adaptation sets are the car command words training
set (cmd) for task-dependent adaptation and a “generic” vocabu-
lary set of various isolated words (city names, commands, names,
etc.) in the car (gen) is used for task-independent adaptation. The
car command words test set (car cmd, 39 speakers, 43 utterances
each, 43 words in total) is the same in all experiments.

4. RESULTS

First we give some baseline results for the telephone and car en-
vironment [12] without any adaptation techniques (upper block of
Table 1). Each line in Tables 1 to 2 states the training data, type of
acoustic models (word for whole word models orphonfor mono-
phones), database adaptation data, test data, online adaptation set-
tings (- means none, 0.0 implies MLLR only and nonzero stands
for a combination of MLLR and MAP with the specified move-
ment factor) and the obtained WER. In the lower block of the table
online adaptation is applied to the upper block scenarios.

train
model
type

dat.
adapt test

�OA
WER
[%]

car cmd word - car cmd - 2.76
car cmd phon - car cmd - 5.78
car phon phon - car cmd - 14.46
tel phon phon - car cmd - 21.74

car cmd word - car cmd 0.0 1.80
car cmd phon - car cmd 0.0 4.88
car phon phon - car cmd 0.0 10.48
tel phon phon - car cmd 0.4 11.18

Table 1: Word error rates without database adaptation (�OA = 0.0
means MLLR only)

We can see significant improvement for whole word and
phoneme models in the car environment (15%-35%) relative). The
preferable online adaptation technique in these scenarios is MLLR
without MAP. Direct usage of telephone environment monophones
yields a WER of 21.74% that can be reduced by almost 50% rel-
ative to 11.18% using a combination of MLLR and MAP with
�OA=0.4. The resulting WER is only marginally above the car
environment trained phoneme references. Note, that in the last



two lines we obtain almost the same word error rates and we did
not use any car environment training data in the last experiment!

Further improvement in the task-independent case (last two
rows of Table 1) can be achieved through database adaptation. We
distinguish two cases: 1) We sacrifice the task-independence of
initial recognizer assuming the availability of a data collection of
the target vocabulary (car cmd training set in our case) in the car
environment in order to improve recognition performance. 2) If we
want to keep task-independence we have to use generic adaptation
material (gen). An important question is the necessary amount
of the adaptation material in the car environment (i.e. number of
speakers = cost).
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Figure 1: Task-dependent adaptation of car and telephone mono-
phone references without online adaptation. The starting point (0
adaptation speakers) is given by the results in Table 1. The num-
bers behind the environment represent the MAP adaptation factor
�.

Figures 1 and 2 show the performance improvement in WER
over the number of adaptation speakers (data collection size) both
for car and telephone environment phoneme references without
online adaptation as starting point. Figure 1 covers the task-
dependent case (adaptation on car cmd corpus) and Figure 2 con-
tains the task-independent case (adaptation on car gen corpus).

As expected, we observe continuous performance improve-
ment with increasing number of adaptation speakers in the task-
dependent case (Figure 1). We finally obtain WERs similar to
task-dependent training. So task-dependent adaptation converges
to task-dependent training when the size of the adaptation mate-
rial approaches the size of task-dependent training material. The
parameter settings in this type of database adaptation are not cru-
cial. We see only minor variation over the MAP movement factors
�DA = 0:2; 0:4. The performance is similar for�DA = 0:6; 0:8
which is not shown in the figure. In the task-independent scenar-
ios (Figure 2)�DA = 0:2 turns out to be the best setting both for
the telephone and the car environment as starting point. The curves
for �DA > 0:4 reveal significantly worse performance and are not
shown for sake of clarity. For small amounts of adaptation material
(less than 20 speakers) performance degradation occurs. Beyond
24 speakers slow but steady improvement takes place. With 40-60
speakers of adaptation material (being a reasonable size in terms
of collection effort) 50%-90% (car) respectively 78%-85% (tel) of
the total performance gain (with 205 adaptation speakers) is ob-
tained. The initial degradation for few adaptation speakers can be
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Figure 2: Task-independent adaptation of car and telephone mono-
phone references without online adaptation (figures = MAP alpha).
The starting point (0 adaptation speakers) is given by the results in
Table 1. The numbers behind the environment represent the MAP
adaptation factor�.

explained by the primary focus on speakers in this phase of data-
base adaptation which then gradually moves to environment adap-
tation for larger numbers of speakers. Of course, the above pure
database adaptation scenarios can be combined with online adap-
tation. Table 2 summarizes the major results of such combination
scenarios for some numbers of (database) adaptation speakers (24,
48, 72).

For task-dependent database adaptation (cmd) in the car envi-
ronment the major gain by online adaptation is due to MLLR (ap-
proximately two thirds of the overall gain by online adaptation).
The total improvement of 15%-20% relative is obtained by com-
bined MLLR and MAP with�OA = 0:2. In the task-independent
database adaptation case (gen) the above relation turns around.
Here MLLR in online adaptation contributes to approximately one
third and additive MAP with�OA = 0:2 as optimal value plays
the dominant role. The overall performance improvement is about
35%-45% relative. Furthermore a minimum number of speakers
in the adaptation material is necessary to achieve positive effects.
If environment adaptation (tel! car) is also part of the database
adaptation process, the latter effect is even strengthened. MLLR
online adaptation yields 2%-3% relative improvement whereas the
combination with MAP with�OA = 0:2 leads to the overall im-
provement of 30%-40% relative.

5. CONCLUSION

We have demonstrated how the adaptation techniques MLLR and
MAP can be used to significantly improve automatic speech recog-
nition in a car environment. Depending on the available training
and adaptation material we defined two adaptation strategies: data-
base and online adaptation. We quantified the expectable perfor-
mance gains by each of those strategies and their combination on
an isolated command word recognition task. The performance of
task-independent car environment references was improved from
14.46% word error rate to 6.43% (55.5% relative) through task-
dependent database adaptation (with 48 speakers adaptation ma-
terial) combined with online adaptation. In order to avoid costly



train
model
type

dat.
adapt test

�OA
WER
[%]

car phon phon cmd24 car cmd - 8.87
car phon phon cmd24 car cmd 0.0 7.39
car phon phon cmd24 car cmd 0.2 7.01
car phon phon cmd48 car cmd - 7.58
car phon phon cmd48 car cmd 0.0 6.68
car phon phon cmd48 car cmd 0.2 6.43
car phon phon cmd72 car cmd - 6.56
car phon phon cmd72 car cmd 0.0 5.91
car phon phon cmd72 car cmd 0.2 5.59

car phon phon gen24 car cmd - 13.88
car phon phon gen24 car cmd 0.0 12.08
car phon phon gen24 car cmd 0.2 7.71
car phon phon gen48 car cmd - 13.24
car phon phon gen48 car cmd 0.0 11.95
car phon phon gen48 car cmd 0.2 8.68
car phon phon gen72 car cmd - 12.60
car phon phon gen72 car cmd 0.0 10.22
car phon phon gen72 car cmd 0.2 8.23

tel phon phon gen24 car cmd - 18.64
tel phon phon gen24 car cmd 0.0 18.06
tel phon phon gen24 car cmd 0.4 10.86
tel phon phon gen48 car cmd - 16.39
tel phon phon gen48 car cmd 0.0 16.00
tel phon phon gen48 car cmd 0.4 10.54
tel phon phon gen72 car cmd - 14.78
tel phon phon gen72 car cmd 0.0 16.26
tel phon phon gen72 car cmd 0.2 9.45

Table 2: Word error rates with database adaptation (�DA = 0.2)
and optional online adaptation (�OA = 0.0 means MLLR only).
The upper block relates to Figure 1 and the middle and lower block
relate to Figure 2.

car environment data collection we investigated the use of (avail-
able) telephone environment data as starting point. The task-
independent telephone environment references could be improved
from 21.75% word error rate to 10.86% (50.1% relative) by com-
bined task-independent database adaptation and online adaptation.
Further improvement can be expected by the use of office instead
of telephone environment data as starting point and the use of
supervision information in online adaptation through confidence
measures or explicit feedback from the user-interface.
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