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ABSTRACT

A generalized sinusoidal model for speech signal process-
ing is studied. The main feature of the model is that the am-
plitude of each sinusoidal component is allowed to vary ex-
ponentially with time. We propose to use the model in tran-
sitional speech segments such as speech onsets and voiced/un-
voiced transitions. Computer simulations with natural speech
signals indicate substantial better modeling performance in
both transitional and voiced regions compared with the tra-
ditional constant-amplitude sinusoidal model.

1. INTRODUCTION

In recent years sinusoidal models for time domain speech
signals have gained considerable interest in various appli-
cations including low bit-rate speech coding [6] and time-
scale/pitch modifications of speech [7][3].

The basic sinusoidal model aims at representing a signal
segment as a sum of constant-amplitude, constant-frequency
sinusoids, i.e.,

~xn =

~KX
k=1

~ak cos(~!kn+ ~�k); n = 0; : : : ; N � 1; (1)

whereN denotes the segment length in samples,~K is the
number of sinusoidal components, and~ak, ~!k, and ~�k de-
note the amplitude, the angular frequency, and the initial
phase, respectively, of thek’th sinusoidal component.

Due to the quasi-periodic nature of voiced speech sounds
the sinusoidal model is particularly appropriate when mod-
eling voiced speech segments. Moreover, it has been argued
that the sinusoidal model is also valid for noise-like signals,
such as some types of unvoiced speech sounds, provided
that the frequencies of the sinusoidal components are spaced
no more than approximately 100 Hz apart, see [6].

However, in speech signal segments where the station-
arity assumption (constant-amplitude, constant-frequency)
of the model is far from valid, the basic sinusoidal model
in (1) may not be effective. Typically, such segments oc-
cur in transitional regions, e.g. at boundaries between un-
voiced and voiced speech or at speech onsets. In this paper

we study the modeling performance of the exponential sinu-
soidal model, a generalized version of the basic sinusoidal
model. In particular, we aim at improving the modeling per-
formance in transitional speech segments.

The outline of this paper is as follows. In Section 2 we
introduce the exponential sinusoidal model. In Section 3 we
present algorithms for robust estimation of the correspond-
ing model parameters. In Section 4 we evaluate the pro-
posed signal model by means of computer simulations with
natural speech signals. Finally, conclusions and directions
for future work are given in Section 5.

2. THE EXPONENTIAL SINUSOIDAL MODEL

Transitional speech segments are often characterized by rel-
atively fast variations in amplitude, which cannot be mod-
eled effectively by the basic sinusoidal model. To obtain
better modeling performance in such segments, we general-
ize the basic sinusoidal model by allowing the amplitude of
each sinusoidal component to vary exponentially with time
within a signal segment. To be specific, the signal model we
address is given by

x̂n =
KX
k=1

ake
�dkn cos(!kn+ �k); (2)

for n = 0; : : : ; N � 1. That is, the modeled signal segment
x̂ = [x̂0 x̂1 � � � x̂N�1]

T consists of a sum ofK sinusoidal
components, whereak denotes the initial amplitude,dk is
the damping factor,wk is the angular frequency, and�k is
the initial phase of thek’th sinusoidal component. In (2) all
sinusoidal parameters are scalar-valued. We refer to (2) as
the exponential sinusoidal model.

Note that we do not restrictdk to be positive, i.e., the
amplitude of each component may be growing with time.
This is, e.g. , suitable for modeling of speech onsets. More-
over, with the special casedk = 0 for k = 1; : : : ;K, all
sinusoidal components are undamped, and the exponential
signal model reduces to the basic sinusoidal model (1).



3. PARAMETER ESTIMATION

Assume that a signal segmentx = [x0 x1 � � � xN�1]
T is to

be approximated by the model in (2). We use a two-step pro-
cedure in order to estimate the model parameters of (2). Ini-
tial estimates are obtained by applying a variant of Kung’s
state-space method [4]. Subsequently, the initial estimates
are refined iteratively by solving a so-called structured total
least norm (STLN) problem [8]. In the following we present
the two steps of the parameter estimation procedure.

3.1. Initial estimates

In order to determine initial estimates of the exponential si-
nusoidal parametersak, dk, !k, and�k we rewrite (2) in its
complex form:

x̂n =

2KX
k=1

ake
j�ke(�dk+j!k)n =

2KX
k=1

ckz
n
k ; (3)

whereck = ake
j�k is the complex-valuedk’th amplitude

andzk = e(�dk+j!k) is thek’th signal pole.
Initially, we assume that the observed signal segment

x = [x0 x1 � � � xN�1]
T can be modeled exactly by (3),

i.e.,x actually is a sum of2K unknown damped complex-
valued exponentials. Moreover, we assume that the number
of complex exponentials2K is known and that all signal
poles are distinct.

We arrange the observed signal segmentx in a Hankel-
structured data matrixX 2 RL�M :

X =

2
6664

x0 x1 � � � xM�1

x1 x2 xM
...

...
xL�1 xL � � � xN�1

3
7775

Using thatx, by assumption, can be written in the form of
(3), it can easily be verified that the Vandermonde decom-
position ofX is given by:

X
VD
= SCT

T ;

where

S =

2
64

1 1 ��� 1
z11 z12 ��� z12K

...
...

...
z
L�1
1 z

L�1
2 ��� z

L�1
2K

3
75 ;T =

2
64

1 1 ��� 1
z11 z12 ��� z12K

...
...

...
z
M�1
1 z

M�1
2 ��� z

M�1
2K

3
75 ;

C = diag(c1; c2; : : : ; c2K), andT denotes matrix transpo-
sition. Since all signal poles are assumed distinct, rank(S)=
rank(T)=rank(X)=2K. The matrixS has the following
shift-invariant property:

S#Z = S
"; (4)

whereZ = diag(z1; : : : ; z2K) contains the signal poles and
S# (S") is the matrixS with the bottom (top) row deleted.

The matrixS cannot be estimated directly from the data
matrixX. Consider instead the truncated singular value de-
composition (TSVD) ofX:

X
SVD
=
�
U1 U2

� ��1 0

0 0

��
V
H
1

V
H
2

�
TSVD
= U1�1V

H
1 ;

whereH denotes Hermitian transposition. The columns of
U1 2 C L�2K andV1 2 CM�2K are the first2K left and
right singular vectors, respectively, while�1 2 R2K�2K is
a diagonal matrix with the2K non-zero singular values of
X in descending order.

The columns ofU1 constitute an orthonormal basis for
the column space ofX. Using that the2K columns ofS is
another basis for the column-space ofX, it follows:

S = U1F; (5)

whereF 2 C 2K�2K is an invertible change-of-basis matrix.
By substituting (5) into (4) we get

U1#Z
(u) = U

"
1; (6)

whereZ(u) = FZF
�1 is a similarity transform of the di-

agonal signal pole matrixZ, i.e., the eigenvalues ofZ(u)

are the signal poleszi; i = 1; : : : ; 2K. Equation (6) is
valid, when the observed signal segment actually is a sum of
damped complex exponentials. For segments of real speech
this is, generally, not the case, and (6) gives rise to an overde-
termined system of equations, which we solve forZ

(u) in a
total least squares sense. The initial estimatesd

(1)
k and!(1)k

of the damping factors and the frequencies of the exponen-
tial sinusoidal model in (3) are found from the magnitude
and angle, respectively, of the eigenvalues ofZ

(u).
The complex amplitudesck in (3) are determined by in-

serting the estimated valuesd(1)k and!(1)k in (3). This gives
rise to an overdetermined system ofN equations, which is
linear in the2K unknownsck; k = 1; : : : ; 2K. This system
of equations is solved in least squares sense. Subsequently,
initial estimatesa(1)k and�(1)k of the amplitudes and phases
are determined from the magnitude and angles of the esti-
mated values ofck.

3.2. STLN refinement

The approximation ofx based on the initial parameter esti-
mates is given by:

x̂(1)n =

2KX
k=1

a
(1)
k ej�

(1)
k e(�d

(1)
k

+j!
(1)
k

)n

This signal segment may not be optimal, i.e., there may exist
another sum of2K damped complex exponentials, which is
‘closer’ to the original signal segmentx.



In general, a modeled segmentx̂ may be written as

x̂ = x+�x; (7)

where�x = [�x0 � � � �xN�1]
T is a perturbation vector.

In order to have the best approximation ofx, we aim at
minimizingk�xk22, while keepinĝx a sum of2K damped
complex exponentials. Here,k � k2 is the vector 2-norm

We exploit the fact, see e.g. [2, 1], that if a signal seg-
ments = [s0 s1 � � � sN�1]

T is arranged in an augmented
Hankel data matrix[Ab], whereA 2 RJ�2K ;b 2 RJ ; J >

2K;N = J + 2K:

[A b] =

2
6664

s0 s1 � � � s2K�1 s2K
s1 s2K s2K+1

...
...

...
sJ�1 sJ � � � sN�2 sN�1

3
7775 (8)

and[A b] is rank-deficient, then the signal segments must
consist of a sum of2K damped complex exponentials. On
the other hand, if a signal segment consisting of2K damped
complex exponentials is arranged as in (8), then the aug-
mented matrix[A b] is rank-deficient.

Now assume that the samples ofx̂ in (7) are arranged
in a Hankel matrix[Â b̂] structured as in (8). Using (7),
the matrix[Â b̂] containing the modeled segment may be
written as:

[Â b̂] = [A b] + [�A �b] = [A+�A b+�b];

where[A b] and[�A �b] are matrices of the type of (8)
containing elements of the original segmentx and the per-
turbation vector�x, respectively.

Now the problem of finding the sum of2K damped
complex exponentials, which is closest tox, can be formu-
lated as the following constrained minimization problem:

min
�x

k�xk22 such that

8>>><
>>>:

[A+�A b+�b]

is rank-deficient

[A b] and[�A �b]

have Hankel structure

This problem may be interpreted and solved as a structured
total least norm problem [8]. In order to solve the problem
we use the iterative algorithm called STLNB in [8]. Initial
values of�A and�b are found by arranging the elements
of the initial perturbation vector�x(1) = x̂

(1) � x in the
Hankel matrix in (8). The iterations of STLNB are stopped,
when the lowest singular value of[A + �A b + �b] has
reached its minimum and has stayed constant for more than
10 iterations. Then, the improved modeled segment is con-
structed from the elements of the first column and the last
row of [A +�A b +�b]. The model parameters for this
segment, which can be described exactly as a sum of2K
damped complex exponentials, are estimated by means of
Kung’s algorithm described in section 3.1.

4. SIMULATION RESULTS

We evaluate the potential of the exponential sinusoidal model
(ESM) in (2) by comparing it with the basic sinusoidal model
(BSM) in (1) and with an improved version of BSM (IBSM),
which uses optimized BSM parameters as explained below.
The models are evaluated with real speech signals sampled
at a rate of 8 kHz and segmented into frames of 200 samples
with an overlap of 40 samples between consecutive frames.
The three signal models are used on each frame. Mod-
eled signals are generated by overlap-adding the modeled
frames.

The BSM parameters are derived from a peak-picking
procedure applied to the magnitude of the short-time Fourier
transform (STFT) of the Hamming weighted signal frame
in question, see [6] for details. Peaks more than 60 dB be-
low the largest peak are not considered, and the number of
peaks is limited to 30. In this paper the STFT is evaluated
by means of a 4096-point fast Fourier transform (FFT).

The IBSM parameters are obtained by minimizing:

V =
N�1X
n=0

�
xn � ~xn(~ak; ~!k; ~�k)

�2
;

with respect to the sinusoidal parameters~ak; ~!k; ~�k. Here,
~xn is given by (1) andxn denotes samples from the origi-
nal signal frame. This minimization problem is a non-linear
least squares problem. We solve it by using the BSM param-
eter estimates as initial values in the Levenberg-Marquardt
algorithm, which is a hybrid Gauss-Newton/Steepest De-
scent iterative algorithm, see e.g. [5].

For each signal frame modeled with ESM, the same num-
ber of sinusoids was used as with BSM and IBSM.

In order to illustrate the performance of ESM, BSM and
IBSM, the SNR defined below is calculated for each signal
frame in a phrase:

SNR= 10 log10

 PN�1
n=0 x2nPN�1
n=0 e2n

!
;

whereen denotes the modeling error at samplen. The result
of this is shown in Figure 1. From this figure it is obvious
that BSM and IBSM perform quite good in steady-voiced
frames, but the performance decreases in transitional seg-
ments. Much better performance is obtained with ESM, es-
pecially in transitional regions, but also for voiced frames.

In Figure 2 is given an example of the modeling per-
formance in a transitional signal frame. The performance
with ESM is substantially better than with BSM and IBSM.
In order to have a clearer indication of the modeling per-
formance of ESM in transitional frames, we modeled 324
different transitional frames with BSM, IBSM and ESM.
The average SNR for the three models is shown in Table
1. Clearly, ESM outperforms BSM and IBSM. Although
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Figure 1: a) Original phrase, b) Modeling performance of BSM
(dotted), IBSM (dashed) and ESM (solid).

BSM IBSM ESM
avg. SNR [dB] 2.1 5.4 31.0

Table 1: Average SNR in transitional speech frames.

IBSM uses optimized parameter values, it performs poorly
in transitional segments. This indicates that the basic sinu-
soidal model is not suitable in transitional segments.

In the experiments reported here, we usedK = ~K,
which means 4/3 more parameters pr. frame with ESM com-
pared to BSM and IBSM. We emphasize, that if we used the
same number of parameters pr. frame, the SNR would still
be much higher for ESM compared with BSM and IBSM.

Informal listening tests confirm the results indicated by
the SNR-values of Table 1. Signals modeled with BSM of-
ten have a ”buzzy” sound in transitional regions, while ESM
signals are almost indistinguishable from the originals.

5. CONCLUSIONS

In this paper we have presented a generalized sinusoidal
speech signal model called the exponential sinusoidal model.
The main feature of this model is that the amplitudes of
the sinusoidal components are allowed to vary exponen-
tially with time. This results in a considerable objective
and subjective improvement, especially in transitional seg-
ments, compared to the basic sinusoidal model.

One drawback of the approach presented in this paper is
the computationally expensive parameter estimation scheme.
Alternatives to this scheme is a topic of current research.
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