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ABSTRACT

The a�ne projection algorithm (APA) is a very promising
algorithm that has good convergence properties when the
input signal is correlated. In particular; it's used to perform
communications systems: echo cancellation; equalization...
However; due to its complexity; there is no available tran-
sient and steady state analysis. In this paper; we present
an exact analysis approach tailored for digital transmission
context. In such context; the input signal remains in a �-
nite alphabet set. With a discrete Markov chain model of
the inputs; we can describe accurately the APA's behav-
ior without any unrealistic assumption. In particular we
calculate the exact value of critical and optimum step size.
Moreover; we provide the exact Mean Square Deviation for
all step size and input correlation. The in
uence of high
order statistics can be enhanced.

1. BACKGROUND

The Least-Mean-Square (LMS) algorithm is well known in
adaptive �ltering; however its convergence speed may be
far from acceptable for many applications; when the input
sequence is correlated. To overcome this problem; many
modi�cations that aim to decorrelate the input signal are
done. In particular; this has lead to the a�ne projection
algorithm (APA) [1]; [2]. It has very promising performance
in acoustic echo cancellation [3]; [4].

The APA algorithm can be also used in adaptive equal-
ization and CDMA applications in order to minimize the
training sequence. In such context; the input signal is sam-
pled; quanti�ed and coded; so it remains in a �nite alphabet
set.

The APA algorithm is given by the following system:(
Hk+1 = Hk + �

�k
�Tk �k

ek

ek = yk �HT
k Xk

(1)

Where Xk = [xk; :::; xk�L+1]
T is the input observation

vector; L is the dimension of the adaptive �lter; and � is
a positive step size. The output signal is de�ned by yk =

FTXk+bk; where F is the "impulse response" of the channel
and bk is the observation noise assumed to be zero-mean
noise; independent of Xk. The estimates parameters vector
is Hk and �k can be de�ned as a direction vector since he
�xes the direction of the update. It is de�ned by [1]; [2]:

�k = Xk � Ukak (2)

Where ak = [UT
k Uk]�1UT

k Xk; and the matrix Uk is the
collection of the last m observations of Xk with m < L;
Uk = [Xk�1; :::;Xk�m].

It's important to note that the last equation (2) repre-
sents a decorrelation operation of the input signal.

The behavior of the algorithm can be described by the
evolution of the deviation vector Vk = Hk � F . The recur-
sion of Vk is given by:

Vk+1 = Vk � �
�k

�Tk �k + �
[XT

k Vk + bk] (3)

Where � is a positive regularization constant which is added
to prevent undesired behavior when �k = 0.

Analysis of the APA algorithm; in the mean and mean
square sense; has been hard to �nd. Few results are ob-
tained for a modi�ed version of APA; with white noise input
sequence [5].

The aim of this paper is to study the convergence and
steady state properties of the APA in the digital transmis-
sion context. In such context we propose; as in [6]; [7] for
LMS analysis; to use a discrete Markov chain model of the
input data to overcome the complexity of analysis.

In digital transmission contexts; the input signal xk
remains in a �nite alphabet set A = fa1; a2; :::; aqg such
as M�ary signal; QAM signal... Consequently; the obser-
vation vector Xk remains also in a �nite alphabet A =
fW1;W2; � � � ;WN g with cardinality N = qd. For example;
when xk 2 f�1g; and the dimension of Xk is d = 2; the

�nite alphabet set is A =

��
1

1

�
;

�
1

�1

��
�1

�1

�
;

�
�1

1

��
.

Since the input sequence is stationary; it can be modeled
by a discrete-time Markov chain f�(k) : k 2 Z+g with �nite



state space f1; 2; :::Ng [6]; [7]; such that:

Xk = W�(k) (4)

The discrete time Markov chain is characterized by its
probability transition matrix P = [pij] and its stationary
probability vector �1.

In the next section we calculate the exact value of criti-
cal and optimum step size. Moreover; we provide the exact
Mean square Deviation MSD for all step size and input cor-
relation.

2. PERFORMANCE ANALYSIS OF THE AP
ALGORITHM

2.1. Proposed approach

In this section we evaluate the APA's performances with
order m = 1 and versus the step size �. In this case the
vector �k is given by:

�k = f(Xk�1;Xk) = Xk �Xk�1
XT

k�1Xk

XT
k�1Xk�1

(5)

Then;

�Tk �k = XT
k Xk �

XT
k Xk�1X

T
k�1Xk

XT
k�1Xk�1

(6)

Consequently;

�k
�Tk �k + �

= h(Xk�1;Xk) =

Xk �Xk�1
XT

k�1Xk

XT
k�1Xk�1

XT
k Xk �

(XT
k Xk�1)

2

XT
k�1Xk�1

+ �

(7)

Since Xk remains in a �nite alphabet set;
�k

�Tk �k + �
remains

also in a �nite alphabet. The vector
�k

�Tk �k + �
can be mod-

eled by:
�k

�Tk �k + �
= g�(k�1);�(k);

and the transient matrix of algorithm becomes:

I � �
�k

�T
k
�k + �

XT
k =M�(k�1);�(k):

So the recursion of the deviation vector can be rewrite as
follow:

Vk+1 =M�(k�1);�(k)Vk � �gk�1;k bk (8)

The performance analysis are made through the evolu-
tion of E(VkV

T
k ). Since bk is zero mean independent of the

input sequence; the recursion of E(VkV
T
k ) becomes:

E(Vk+1V T
k+1) = E(M�(k�1);�(k)VkV

T
k MT

�(k�1);�(k))

+�2�2bE(g�(k�1);�(k)g
T
�(k�1);�(k))

(9)
The main idea in this paper is; since there is N possibilities
of W�(k) and N2 possibilities of M�(k�1);�(k); we split the

matrix E(VkV T
k ) in N2 components de�ned by:

qi;j(k) = E(VkV
T
k 1�(k�1)=i1�(k)=j) (10)

So we obtain the recursion:

qi;j(k+ 1) =

NX
l=1

E(Vk+1V
T
k+11�(k+1)=j1�(k)=i1�(k�1)=l)

=

NX
l=1

E(Ml;iVkV
T
k 1�(k+1)=j1�(k)=i1�(k�1)=lM

T
l;i)

+�2�2b

NX
l=1

E((gl;ig
T
l;i)1�(k+1)=j1�(k)=i1�(k�1)=l)

(11)
Since Ml;i are constant matrices; the di�culties to analyze
the APA are avoided; and one can deduce the recursive
formulae between qi;j(k + 1) and qj;l(k) without any inde-
pendence assumption by:

qi;j(k + 1) =

NX
l=1

Ml;iql;i(k)M
T
l;i:

:Prob(�(k + 1) = j=�(k) = i; �(k � 1) = l)

+�2�2b

NX
l=1

gl;ig
T
l;i�1(l)pl;i

(12)
Then;

qi;j(k + 1) =

NX
l=1

Ml;iql;i(k)M
T
l;i pi;j sgn(pl;i)

+�2�2b

NX
l=1

gl;ig
T
l;i�1(l)pl;i

(13)

Where sgn(:) denotes the sign function.
In order to rewrite the last recursion in linear form; we

introduce the useful notations:

~Qi(k) =

2664
vec(q1;i(k))
vec(q2;i(k))

...
vec(qN;i(k))

3775 2 RNL2 ;

Qi(k) =

2664
vec(qi;1(k))
vec(qi;2(k))

...
vec(qi;N (k))

3775 2 RNL2 ; ~Zi =

2664
vec(zi;1)
vec(zi;2)

...
vec(zi;N )

3775 :
We have then:

Qi(k+ 1) = �i ~Qi(k) + ~Zi (14)

Where

�i = (KT
i 
 IL2)diag(sgn(pli)Ml;i 
Ml;i)l=1::N (15)

and Ki is a matrix (N � N) which has all the rows equal
to the ith row of the transition matrix P .

Finally; we denote:

Q̂(k) =

2664
~Q1(k)
~Q2(k)

...
~QN (k)

3775 Ẑ =

2664
~Z1
~Z2

...
~ZN

3775 Q(k) =

2664
Q1(k)
Q2(k)

...
QN (k)

3775



We obtain:

Q(k+ 1) = diag(�i)Q̂(k) + Ẑ (16)

We introduce bP; the permutation matrix that transforms
the vector Q̂(k) at Q(k):

Q̂ = bP Q(k) (17)

So; we have:

Q(k + 1) = diag(�i) bPQ(k) + Ẑ (18)

Finally; we obtain the important equation:

Q(k+ 1) = �Q(k) + Ẑ (19)

Where
� = diag(�i) bP (20)

The matrix � contains all relevant information about the
algorithm performances.

It is interesting to note; that through the proposed ap-
proach the needed assumptions are a subset of the usual
ones. Most importantly; in the �nite alphabet case; no in-
dependence assumption is needed.

2.2. Exact determination of the algorithm perfor-
mances

2.2.1. Exact critical and optimal step sizes

In transient state; the critical step size �c is de�ned as the
step from which the algorithm diverge. This is found when
� has an eigenvalue higher than 1. So; we can determine �c

as follows:
�c = arg(��max(�) = 1) (21)

The optimal step size �opt is de�ned as the step that
gives the maximal speed convergence. This is found when
� has all eigenvalues small. So; we can determine �opt as
follows:

�opt = arg(min(��max (�))) (22)

The quantity ��max(�
opt) �xes the speed of convergence.

To illustrate these results; lets as consider a particular
identi�cation scheme with L = 2 and xk belongs to the
�nite alpahbet set f+3;+1;�1;�3g. For the evaluation of
�c and �

opt; we consider three cases of input statistics. The
�rst case deals with i.i.d. inputs. The second and the third
cases deal with a particular transition matrix wich has the
folowing form:2666664

� 0 (1 �
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� 0
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7
)

2�

7
�

3777775 :

The factor � and the transistion matrix �xe all the statistics
of the input signal.

The variation of ��max versus the step size is depicted
in �gure 1. It is interesting to note that in such case; the
optimal step size �opt is equal to 1 for di�erents inputs
statistics. However the critical step size depends on the
transition matrix and it is always less than 2.
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Figure 1: Evolution of ��max versus the step size

2.2.2. Exact MSD

Since the equation (19) is linear; we can deduce easily Q
1

by:
Q
1

= lim
k!1

Q(k) = (I � �)�1Ẑ (23)

From the last equation we obtain the MSD:

MSD =

NX
i=1

NX
j=1

tr(qij
1
) (24)

Where qij
1

are deduced from the vector Q
1

.

In the considered simulation example; the input sequence
xk belongs to the alphabet f�1g with a transition matrix:24 3

4

1

4
1

4

3

4

35 ;
and �lter lengh is L = 2.

Then; the transition matrix for the input signal Xk is:

P =

2666664
3

4
0 0
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3777775
Refering to the equation (24) we can determine the

MSD calculated by the new approach.
To determine the MSD; we run a Monte-Carlo simulations
over 50 realizations; and estimate the needed results by av-
eraging the MSD after convergence. Figure 2. represents
the evolution of the MSD with the step size.
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Figure 2: MSD variation with the step size

The main contribution of this �nite alphabet tailored
analysis is its exactness. This is illustrated by the perfect
agreement beween the simulation and theortical results.

3. CONCLUSION

APA's performances are analyzed in the real context of dig-
ital transmission where the input signal belongs to a �nite
alphabet. This exact analysis was easily done without any
unrealistic hypothesis. We calculate the exact value of crit-
ical and optimum step size. Moreover; we provide the exact
Mean Square Deviation for all step size and input correla-
tion.

The �nite alphabet approach seems to be a very pow-
erful tool to global optimization of a transmission chain in-
cluding source coders; adaptive �lters; and channel coders...
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