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ABSTRACT

This paper compares two approaches to speaker verification,
Gaussian mixture models (GMMs) and Hidden Markov models
(HMMs). The GMM based system outperformed the HMM
system, this was mainly due to the ability of the GMM to make
better use of the training data. The best scoring GMM frames
were strongly correlated with particular phonemes e.g. vowels
and nasals. Two techniques were used to try and exploit the
different amounts of discrimination provided by the phonemes
to improve the performance of the GMM based system.
Applying linear weighting to the phonemes showed that less
than half of the phonemes were contributing to the overall
system performance. Using an MLP to weight the phonemes
provided a significant improvement in performance for male
speakers but no improvement has yet been achieved for
women.

1. INTRODUCTION

The two most common and successful approaches to text
independent speaker verification are based on modelling the
speech by Gaussian mixture models (GMMs) [1] and hidden
Markov models (HMMs) [2]. In a HMM based system,
speaker verification is usually performed using a phonetic
description of the incoming speech. Temporal information is
modelled by the HMMs and consecutive frames of data are
forced to align to a sequence of sounds of the language being
spoken. A GMM based system uses a general description of
the data and each frame of features generated is treated
independently of all other frames.

In recent speaker recognition evaluations carried out by the
National Institute of Standards and Technology (NIST), the
best GMM based systems have outperformed the HMM based
systems [3]. This suggests that no gain in performance is being
achieved by the use of temporal information captured in the
HMMs. The research described in this paper has concentrated
on investigating the difference between the two approaches.
Experiments have been carried out to try and improve the
performance of a GMM system by using phonetic knowledge
contained in the HMM system.

Section 2 describes the experimental configuration of the
GMM and HMM systems and provides a description of the
databases used. Section 3 compares the results from a series of
experiments using two speaker verification systems with
identical front end processing, one based on GMMs and the

other on HMMs. The interaction between GMMs and the
phonetic labelling produced by a HMM system is described in
Section 4. Section 5 presents the improvements made to a
GMM based speaker verification system by using phonetic
weighting and Section 6 presents the conclusions of this work.

2. EXPERIMENTAL CONFIGURATION

The experiments described in this paper were carried out using
the NIST 1998 Evaluation data. The acoustic analysis used in
the experiments was as follows. The data was sampled at 8kHz
and then filtered using a filterbank containing nineteen filters.
The log power outputs of the filterbank were transformed every
10ms into twelve mel frequency cepstral coefficients (mfcc)
and their first and second derivatives. Further the frame
energy, delta energy and delta-delta energy were used to
represent the input speech by thirty-ninth order feature vectors.
The mean of each of the cepstral parameters was estimated for
each segment of speech and subtracted from each of the feature
vectors.

For the comparison of the two systems, GMM and HMM,
identical front ends were used. Speaker independent
background models were created for both systems using eight
hours of speech taken from the OGI Multilingual Corpus [4]
and from the NIST 1995, 1996 and 1997 speaker recognition
evaluations. The data was equally distributed across each
gender and database.

The background models for both systems were trained using
the EM-algorithm [5]. The GMM background model consisted
of 256 mixtures and was built from data of both genders. Two
sets of 28 HMMs based on phonetic classes were built, one for
each gender, in addition to general models representing noise.
Each HMM had three states with three Gaussian mixture
modes per state. A left to right topology was used with no
skipping of states allowed.  The number of Gaussian
distributions used were chosen to minimise the differences
between the two systems. The GMM system had a total of 256
Gaussian distributions compared with 252 for the HMM
system.

For both systems, models were trained for each target speaker
using mean only adaptation. The variances of the distributions
were taken from the associated modes of the speaker
independent background models.
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Figure 1: Speaker Recognition Results for GMM and
HMM Systems, One-Session Train, 30s Test.

In the HMM system, scoring was performed by accumulating
the log likelihood ratios of the 65% best scoring vectors. In
the GMM system, a general noise model was used to reject
non-speech frames and all of the remaining frames were used
to calculate the speaker score. These methods were optimised
on previous speaker recognition evaluation data.

The speaker scores were normalised for both systems by the
background model [6] and by z-normalisation [7] using 100
speech files for each handset (electret and carbon) taken from
the NIST 1997 Evaluation.

3. GMM HMM SYSTEM COMPARISON

The systems described above were tested using the 30s test
conditions of the NIST 1998 Evaluation. Both genders were
used to produce the results. A DET-plot [8] for both systems is
shown in Figure 1 for the one-session training condition. The
GMM system performed significantly better than the HMM
system for each of the training conditions.

It is believed that the main difference in the performance was
due to the training of the models used. In the HMM system,
the training speech is labelled with a phonetic based
transcription and the phoneme specific frames are uniquely
assigned to one of the HMM phoneme models. In the GMM
system, one large model is used allowing the sharing of
training data between different mixtures, disregarding the
phoneme specific information. This leads to better trained
mixture parameters. Therefore it would first appear that the
GMM does not use any phonetic knowledge of the incoming
speech. The HMM is able to use this knowledge along with
temporal modelling but does not perform as well as the GMM
based system because of poorly trained distribution parameters.
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Figure 2: Speaker Recognition Error vs. Number of
Occurrences Seen in Training

4. GMMS AND PHONETIC CLASSES

The results described above led to further investigation of the
best scoring GMM frames. It was found that there was an
exact correspondence between the best scoring frames of the
GMMs and particular sounds occurring in the speech. The
discrimination between speakers provided by the GMM was in
fact due to a subset of phonetic classes. Even though the
sounds were not being explicitly modelled by a GMM the
scoring appeared to be closely related to them. Previous
experiments with HMM systems have shown that the phonetic
classes provide different amounts of discrimination between
speakers [2,9]. Therefore these experiments were repeated
using a GMM based system.

The positions of the phonemes in the test data were found by
using the HMM based system to label the speech with a
phonetic transcription. The frame likelihoods generated by the
GMMs were then pooled for each phoneme separately and
final scores obtained by normalising by the total number of
frames in the file. Results for the different phonemes are given
in Figure 3. This shows that certain phonemes perform
significantly better than others and correspond closely to those
providing the most discrimination in other systems [2,9].

Figure 2 shows the error rate for each phoneme compared to
the number of frames of data seen at training time. While there
is a strong correlation between performance and the amount of
training data, there is also a marked difference in equal error
rates between phonemes with the same amount of data. This
shows that the amount of training data is not the sole
explanation for the difference in verification performance of
the phonemes. The GMM system is therefore also using
discrimination based on the phonemes for speaker recognition.
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Figure 3: Speaker Recognition Performance For Each Phoneme Using A GMM System: Results show equal error rates

(EER) for both genders and same number (SN) and different number (DN) conditions.

C1 represents a collapsed

phoneme class of ph, b, th, d, kh, g and h and C2 represents f, T, D, d(, s, S dZ and tS.

5. PHONETIC WEIGHTING

5.1 Linear Combination of Phoneme Scores

The GMM based system combines the information provided by
the phonemes by adding the frame likelihoods to give a final
score. This gives each of the phoneme classes the same
weighting in the overall scoring.

The GMM system, whose performance is given in Figure 1,
uses all of the phonemes present to produce the final score.
However some of the phonemes provide little or no
discrimination between speakers and the inclusion of these may
lead to a degradation in performance. Therefore it should be
possible to achieve a better system performance by omitting or
reducing the contribution of these phonemes.

Figure 4 shows that using a subset of the most discriminative
phonemes gives better performance than using all of the
phoneme classes. Here the phonemes are sorted by their
individual recognition performance and the scores of the n-best
phonemes are summed with equal weight to produce the final
score. The horizontal lines show the baseline performance
achieved by the system using all of the phonemes for scoring
for the same number and different number tests.

Figure 4 also shows that a small number of phonemes are
responsible for the overall performance of the whole system.
Using a system with a subset of 10 to 15 phonemes provides
better results than the standard system using all of the
phonemes. Although the difference in performance is not
highly significant it may be possible to use more sophisticated
techniques in the future to combine the phoneme scores.
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Figure 4: Speaker Recognition For Men Using A Sub-
set Of All Phonemes.

5.2 Combining Phoneme Scores Using An MLP

As described previously, a subset of the 28 phoneme classes
leads to the same result when the individual scores are added
linearly. In general a linear summation does not lead to an
optimal solution. Therefore an MLP was applied to the
merging of the phoneme scores to try and improve
performance.

For this purpose an MLP with one hidden layer containing fifty
hidden nodes was used. The inputs to the net were the best
fifteen phoneme classes, namely @, E, ei. al, I:, n, 1, j, 9r, I, m,
Cl, &, C2 and w. C1 and C2 are two collapsed consonant and
fricative classes previously used in the HMM system. These
phonemes had produced good results for both male and female
speakers.
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Figure 5: DET-Plot For The Male Speaker Set Using
the Standard GMM And Fifteen Phoneme MLP.

In training the MLP, not all of the phonemes scores were
available for each speaker since the phonemes do not always
occur in the test data. The missing scores were replaced by
zero so that the training of the MLP was unaffected. It was
discovered that the discrimination provided by the phonemes
was different for men and women. Therefore, separate MLPs
were then built for each gender.

The training and testing of the MLP shown here used the one-
session 30 second test. The whole test for a particular gender
contains 25000 individual tests with 250 target speakers and
2500 speech files. To provide independent train and test sets,
the data was partitioned into three sets with each target speaker
only occurring in one of the sets. The MLP was trained with
one quarter of the files and a preliminary test performed using
a different quarter of the files. A final test was then made
using the remaining files.

Results using the MLPs are shown in Figures 5 and 6 for both
genders. Results show that a significant improvement in
performance has been made for male speakers by using the
MLP approach. However no improvement has yet been
achieved for female speakers.

6. CONCLUSIONS

This paper has provided a comparison between two text
independent speaker verification systems with identical front
end processing, one using GMMs and the other HMMs. The
GMM based system provided significantly better performance
for all tests. This was mainly due to the training of the GMM
where the data is shared between the mixtures of one model.
In training the HMMs, data is first aligned to phoneme classes
and no data is then shared between classes when training the
phoneme based HMMs.

The best scoring frames of the GMMs were highly correlated
with particular phonemes. The performance was found to be
mainly independent of the number of occurrences seen in
training. Ten to fifteen phonemes were in fact contributing
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Figure 6: DET-Plot For The Female Speaker Set Using
The Standard GMM And Fifteen Phoneme MLP

most to the discrimination between speakers. Applying both
linear weighting to the phonemes and non-linear weighting by
using an MLP, gave some improvement in system
performance.  This improvement was greatest for male
speakers.  Future work will concentrate on trying to
incorporate more of the knowledge contained in the HMMs
¢.g. temporal modelling to improve GMM system performance.

7. REFERENCES

[1] D. A. Reynolds, ‘Speaker Identification and Verification
using Gaussian Mixture Speaker Models’, Speech
Communication, vol.17, August 1995, pp91-108.

[2] E. S. Parris and M. J. Carey, ‘Discriminative Phonemes
for Speaker Identification’, Proc. ICSLP 1994,
Yokohama, pp1843-1846.

[3] M. A. Przybocki and A. F. Martin, ‘NIST Speaker
Recognition Evaluation - 1997°, Proc. RLA2C 1998,
Avignon, pp120-123.

[4] Y.K. Muthusamy, R.A.Cole and B.T. Oshika, ‘The OGI
Multi-Language Telephone Speech Corpus’, Center of
Spoken Language and Understanding, OGI

[5] A. Dempster, N. Laid and D. Rubin, ‘Maximum
likelihood from incomplete data via the EM-Algorithm’,
J. Royal Stat.Soc, vol 39, 1977, pp38.

[6] M. J. Carey, E. S. Parris and J. S. Bridle, ‘A Speaker
Verification System using Alpha-Nets’, Proc. ICASSP
1991, Toronto, pp397-400.

[7] D. A. Reynolds, ‘Comparison of Background
Normalisation methods for text-independent speaker
verification’, Proc. EUROSPEECH 1997, Rhodes, pp
963-966.

[8] A. Martin, G. Doddington, T. Kamm, M. Ordowski and
M. Przybocki, ‘The DET Curve in Assessment of
Detection Task Performance’, Proc. Eurospeech 1997,
Rhodes, pp1895-1898.

[9] J. Eatock and J.Mason ‘A Quantitative Assessment of the
Relative Speaker Discriminative Properties of Phonemes’,
Proc. ICASSP 1994, Adelaide pp. 1133-136.



