FAST CONSTRUCTION OF TEST-PROGRAM GENERATORS
FOR DIGITAL SIGNAL PROCESSORS

Shai Rubin, Moshe Levinger Randall R. Pratt, William P. Moore
IBM Research Division, Haifa Research Lab IBM Microelectronics Division, Essex Junction, Vt.
rubin@haifa.vnet.ibm.com rrpratt@vnet.ibm.com
Abstract the use of already available technology and tools instead of

) investing time and money building specific tools.
Test-program generators play a key role in hardware

functional verification of large scale processors. However, in the ~ The paper is organized as follows: Section 2 illustrates the
DSP domainthe usage of full-blown test-program generators j@ain characteristics which render Genesys and our work-model a
much less popu|ar’ main|y due to the limited resources (t|me amsible and effective solution for the DSP domain. Section 3
money) available when developing such systems. This pap@sents the infra-structure of the Genesys system and its main
describes a work-model for the fast, low cost construction off@atures. Section 4 proposes the process required for constructing a
test-program generator for DSPs. The core technology udést-program generator based on the Genesys system. Section 5
Genesys, a known test program generator that, until now, has péescribes a case study where a Genesys system was constructed for
used for the verification of large scale processor families, such & 1BM C54XDSP[6]. Section 6 concludes the paper.

PowerPC and x86. We developed the model while using Genesy:

for verification of the IBM C54XDSP, a recently-announced fix:g-' ??EQUIREMENTS FOR A TEST PROGRAM

point DSP. The case study shows that it is possible to build a {ARENERATOR FOR DSPs

test-program generator in a very short time and thus achieve better In opposite to large scale processor families (e.g., IBM's

verification coverage in spite of the shorter development time. PowerPC Intel's x86), DSPs are characterized with short
development schedule and the low price per unit [5]. These impose

two fundamental requirements on an automatic test-program
1. INTRODUCTION generator:

The goal of processor verification is to ensure equwalence.OtI'he development period required for constructing a test-program

a processor and its architectural specification. In praCtic‘""generator must be very short in order to meet the verification
processor verification is carried out by simulating a relatively demands of a relatively short design schedule.
small subset Of. Sele.CtEd test programs. These programs are, "Yhe cost of developing an automatic generator for a DSP project
through the design simulation model and the results are comparegmulol not be oo expensive
with the output predicted by the architecture simulation model. '
Automatic test-program generators are used in order to produce Thus, for a test-program generator to become the main
massive and qualitative test-program subsets [1]. verification tool in a DSP project, it must successfully meet the cost

Usually, when developing a new processor ones implemeﬁ‘{1d schedule requirements. The Gengsys systgm and our proposed
its own archiiecture-speeific test program generator. The Genewgrk_mOdel lend themselyes well to this ta;k. Firstly, Gengsys ISa

) Rure platform with a high level of architecture expressiveness.

system takes a different approach. It is a generic, arch|tect%qs implies that Genesys can easily encompass new architectures

independent test-program generation system [2]. A formal mod«als-.ngl its current modeling power. Secondly, the work-model

the Genesys knowledgg ba_lse - lies at the heart of the .SyStem'rotposed in this paper allows the user to play a significant part in
allows for the specification of most of the architectur

components which mav be found in target processor architectut e construction of the test-program generator. This reduces the cost
P Y getp S uilding the generator system and enables users to add their own

B
:?/v? dff::é;hgfsésgsg;;;z Zigsafgh?tse;z?:pmgram generat%g%lrng experti_se t(_) the tool. Furthermore, Genesys is a_generic tool
' that after the first investment (cost and system foundation), can be
Genesys was originally devised to cope with very complexsed to verify every processor a company might develop in the
large-scale, processor systems [1,3]. It has a variety of capabilifigsire. This fact reduce even more the cost of test-generators for the
targeted at verifying complex mechanisms, such as Memargxt processor generations.
Management Units (MMU - virtual memory), cache protocols and
hierarchies, multi-processor configurations, etc. During the last §XTHE GENESYS SYSTEM
years, Genesys has been widely used on many IBM products all The Genesys system consists of the following four basic

over the world and was recognized as a key tool for hardwdféeracting components (Fig. 1):
verification by a non-IBM customers like SGS-Thomson [4]. a. The engine of the system - a generic, architecture oblivious,

In this paper, we show that the use of the Genesys system as test-program generatd,2].
a test-generator can be extended to many other processors aRdA knowledge basean external specification which holds a
architectures, and in particular, to less complex ones, such as formal and declarative representation of the targeted
DSPs. We propose a work-model that is particularly useful and architecture and a procedural description oftéséing
suitable for fast construction of test-program generators for this knowledgerequired for its verification.
family of simpler processors. The proposed work model calls forC. Anarchitecture (behavioral) simulatarsed to predict the

results of the instruction execution. accurate definition of the desired object. The entire specification of
d. A GraphicalUser InterfacqGUI). the architecture is done in a declarative fashion. This leads to a
simple scheme for knowledge base population and facilitates the
construction of new Genesys systems.

Knowledge Base Architecture The second part of the knowledge base contains the testing
Testing Knowledge Simulator knowledge. This part enables the expert user to add testing

* * expertise to the architectural model. This specific knowledge,
User either architectural or implementation-dependent, is used by the
Interface |~ gzsr:j;‘:grram generator during the instruction generation process. An example of

such knowledge is the infinity value for floating point operations.
Special functions can be easily added into the knowledge base in
Figure 1.System Components and Interrelation order to ensure generation of such values for the various Floating
Point instructions. A detailed description of the knowledge-base
can be found at [1,2,4].

The system supports two main usage modesobd
Generationand Specific GeneratiarGlobal Generation directives
apply to the instructions selected for the test and enable the userto From the above discussion, the reader should note the
direct the generation process towards interesting areas in orderfeowing main observation:
exercise different architecture and implementation mechanisms The power of Genesys is inherently found in two main

(€.0., memory accesses, exceptions, etc.). Specific Generatigf, ,,nents: the generic engine and the knowledge base. However,

mode allows the user to specify highly delicate test scenariogs generic engine can supply extensive verification capabilities
where many constraints are placed on the generation process. even when working with a minimal knowledge base, i.e., one that

The task of the generator is twofold: first, to generate a tesgontains only a few instructions and no testing knowledge.
program that meets all the predefined constraints; second, to This fact enables us to rapidly build a verification

complete the specific scenario generation using its biased-randq ironment for DSPs. As soon as the designer has a knowledge
capabilities whenever something was not specified. base with only few instructions, verification can begin. During the
Several of the major features and capabilities available in theerification process, the designer may continue to add more
generator are listed below: instructions and testing expertise into the tool. This leads to the

. . ._suggested work-model described in the next section.
1. Instruction Stream - The user can select the set of instructions

to be used in the generated test-program. 4. THE WORK-MODEL
2. Exception Control - The user may control the frequency of ~ The final goal of the work-model is to build a complete
each exception type in the test. verification environment (Figure 2). Due to the short period

allocated to the development effort, the process has to be

3. Resource Sharing -_Usmg t_hls feature, the user can direct tn?cremental, fast and productive from the very first stages.
generator to generate instruction sequences which (re-)use the

same resources intensively (i.e., registers, memory locations, etc.) [Genesys system |
within a small “window” in the instruction stream. Y- — — o Genesys oUTput - a tes|.

[Design simulation }

4. Data-Types - The user may invoke testing knowledge
procedures (generation functions) which will affect the data [_Compare results |
selected for the operands of the instructions generated in the test.

Figure 2.Genesys-based Verification Environment
5. Macros - The user can define test patterns that will invoke The main purpose of the work-model is to allow designers to

specific parameters during the generation process. use partial versions of the generator as early as possible. As a
6. Loops - The user may define test scenarios which includ@sult, the verification process may begin even before all stages
various types of loops. have been completed. The verification group’s heavy involvement

. in the Genesys construction process not only contributes to the
7. Value Enumeration - The user may ask the generator {94 construction effort, but also develops expertise in the tool as

enumerate all of the relevant values for a given test entity (f_%ell as in the design’s architecture, thus increasing the quality of
example, enumerate all operand data, enumerate possﬂm% system

exceptions, etc.).
The first step in the process is to build an operational system
that generates legal tests for the design. The definition of a legal
3.1 The Genesys Knowledge Base test, in this case, is a test-program that is completely consistent
The Genesys knowledge base is a hierarchical databaggh the architecture’s specification. Although the tests generated
representing the architectural details and the specific testing this time are mostly random, all the internal power of Genesys is
knowledge of the design. The first part of the knowledge basgready available. The following six stages describe this part of the
contains a description of the architecture. The major classggocess (stages 3-5 may be done in parallel).
represent the main processor constituents, such as: Instructions,

Operands, Formats, Fields, Exceptions and Registers. For eachlofA‘rChiteCture studyThe Genesys expert becomes familiar with

these classes, there exists a template of attributes which allows Bff €ssential parts of the architecture. The instruction set s divided

into two sets: Set A and Set B. Set A contains instructions whosibsequent applications of Genesys.
mogellng IS stralg.htf.orward,.they can be g.enerated n a fqlly Figure 3 presents the complete process and all the stages
random manner (similar to arithmetic instructions). Set B C_Ons's’tr%quired to establish the full-blown test generator.

of instructions that are more tailored to the specified architecture
and in some cases these instructions will be generated only in user-
supervision mode.

il (NOP) System

 Buid vmmsigw]
environment - -

2. Building the initial (NOP) systemin this step, all system
components are established. A basic knowledge base is created
and any changes necessary are made to the Genesys engine. This —prgmmorwim
stage is done using a NOP-simulator - a simple simulator that fully the simulator
supports the Genesys requirements, but treats every instruction as

a NOP. Using this kind of simulator enables the team to build a L
complete system, even in cases where the behavioral simulator is

not ready for use at this early point in the design. The initia16
system serves two main purposes:

n-going Process

TK population

Genesys experts responsibility C3 Combined teams

« Learning - The verification team starts learning how to use [Verication team responsibilty

Genesys and what it is capable of.

« Beginning integration - The first steps towards integrating the
Genesys system into the whole verification environment are g, re 3 Actions and People Involved in the Construction of the
performed. For example, establishing the link between Genesys Generator

and the design simulation model (usually VHDL/Verilog), :
writing a preliminary version of the API between Genesys and®- CASE STUDY: BUILDING A GENESYS

SYSTEM FOR THE IBM C54XDSP

3. Detailed design of Set A instructianBhe design describes the This section describes the results when our suggested work-
architecture in a way that is consistent with the knowledge baseodel was applied to a general-purpose DSP, the IBM
hierarchy. This stage requires an in-depth understanding of ti@54XDSP[6]. The end of this section describes how Genesys was
architecture and is carried out by both the verification and Genesysed to implement the verification plan.

teams. The C54XDSP is fully compatible with the well-known C54x

4. Integration with the behavioral simulatoéfter constructing the Texas Instruments DSP family. The C54x architecture includes a
initial (NOP) system, the team integrates the behavioral simulattighly specialized instruction set of 187 instructions. The
with Genesys. The work-model assumes that a function@rocessor contains no cache nor MMU, but does include three
behavioral simulator is already available to the design project faeparate memory spaces for instructions, data, and I/O, as well as
software development purposes. In this case, only the simulatowiltiple buses.

API required by Genesys needs to be implemented.

the architecture’s behavioral simulator, etc.

5.1 Constructing the Genesys System - Results

5. Establlshlng the Genesys-based simulation environn8omme The entire test_program construction process took 3-4
work is usuaIIy required in order to convert Genesys OUtpUtS (u’&rson months (Tab|e 1) The final output of the process is a
test cases) to the inputs of the design model. By using the tegknesys system which can generate random tests on over 90% of
cases produced by the initial system, the verification team is noe instruction set. Tests for the rest of the instruction set can still
ready to integrate Genesys into the verification environment. pe generated by the system, but only within a specific generation

After completing steps 1-5 (in the case study, these stagEéPde' since control and supervision by the user are required.

took about a month), the first random test may be generated gnad -

fully simulated by the design model. Although the system consists ~ Stage Time Remarks

of very few instructions, all the inherent capabilities of Genesys s, - study 1 week Set A includes 150 instructions

can be used in these tests. For example, full addressing-mqde Set B includes 37 instructions

support, interdependency between instructions, long and rand Mop-and ni- | 1 week 100 lines of C code

tests, etc. tial system

6. Testing KnowledgeAfter the population of Sets A and B is | get A design 1 week 150 instructions with 73 differen

complete, and the simulation environment has been implemented, formats

the extension of the Genesys knowledge-base through the us A nstruction 1 week Done at the verification site

Testing Knowledge (TK) becomes an on-going process. Applyingof verification through the combined effort of the

TK to the system helps focus the testing onto critical, sensitiie environment Genesys people and the verificatio

areas, and prevents the generator from testing invalid cases, ¢.g, team

division by 0, if that is not supported by the architecture. Additio Set A popula- | 1 month The verification itself can start

of TK continues through the completion of the verification plan. | 4o, immediately after populating the
The expertise developed in all aspects of Genesys can pe first instructions

carried effectively from project to project and serves to streamlineSet B design 1 week

Genesys system can also be applied to the following areas:

Stage Time Remarks
« Data Dependency tests - Using Genesys’ random generation of
Set B popula- | 1 week Requires close guidance by Geng- the operands, coupled with the appropriate testing knowledge,
tion Sys experts both boundary conditions in the architecture, as well as
Full verifica- 2 months For certain instructions and func- unsuspected data sensitivities in the design can be tested.
tion plan tions, much of this can be done in « Random instruction streams - These types of tests have been
parallel with other stages, as the very effective in detecting subtle bugs, especially in the areas of
Instructions mature. stalls. While there are inherent restrictions in the architecture on
Testing On-going | This extends throughout the life gf adjacent pairs of instructions, this type of (often intelligently
Knowledge the verification plan. directed, but also random) testing has proven quite beneficial.

Table 1.Stages and figures for the building process of the 5 4 Results

GenesydBM C54XDSP Genesys tests uncovered approximately 100 design errors in

. L . the design, in spite of having started after many opcodes and
5.2 Implementation of the Preliminary Verification Plan ¢ nctions had already been verified. A total of 1814 tests were
The purpose of the preliminary verification plan is to verifygenerated for the Groups discussed above. These tests are a key
that the basic parts of the design and the verification methodologyart of the static regression suite. A total of more than 75,000 Data
work properly. Basic parts are considered to be the opcodes (t@épendency and Random tests have also been run to date. The
are currently supported in the design) and the address modes. rapid integration of Genesys into the Verification Plan was critical

The application of Genesys to verification of the C54XDSHO the successful verification of the IBM C54XDSP.
began after parts of the design were already implemented a
partially verified. Thus, the Group 1 tests below were omitted. Th@e)q CONCLUSION

Group 2 tests were the primary debug vehicle (preliminar Ceglstfg'rsfng S;r\gfr ((i:?'?)cr::Ig??esat-wr%rkr-?n?deelnaer:gt:rssgazggin
verification) of the Genesys database, test generation, aﬁj&o uct prog 9

verification environment. At this time, architectural verification of € Gene_sys platform. This framework can be highly effective for
the design was productive in finding design errors. constructing a test-ger_werator for DSPs. The proposed work-model
enables the construction of a full-blown, test-program generator

The following groups of tests for the preliminary verificationwithin the cost and development time requirements of a DSP

plan were defined as described below: design. This work-plan was used in the verification of the
* Group 1: For each instruction, one instance of the instruction CE’_4_XDS_P' The use _Of Genesys al_wd_the work-_model enabl_ed an

was used per test. This would validate the database and the efficient implementation of the preliminary verification plan in a

model. As discussed above, this group of tests was skipped. very short time and help to find many bugs, some of which are
« Group 2: For each instruction, ten instances of the instruction considered hard to find. The results obtained from this case-study

were used, separated by 3 NOPs (no-op instructions). NOPs reaffirm our claim regarding the speed and cost of building test-.
were used to avoid pipeline and latency issues. There were 479enerator systems for DSPs. Furthermore, the proposed system is
different tests generated. a long term investment since it can be used for verification of

« Group 3: For each instruction that used the indirect addressinﬁfa”Ous processors and their future generations.
mode, one instance of the instruction was used for each of the7' REFERENCES
valid (between 12 and 16) addressing modes. There were 25411
tests generated. C
= Group 4: For each instruction that used the #lk (long constar_lt}or Functional Verification of PowerPc Processors in IBM” in

form of indirect addressing, one instancg of eac_h #lk addressmlgroc_ ACM/IEEE 32nd Design Automation Conference 1995.

format was used, for each of the 8 possible wait state values (Ew Y. Lichtenstein, Y. Malca, A Aharon, “Model Based Test

the external bus. There were 170 tests generated. Generation for Processor VerificationBM Technical Report

88.337 1993
The latter group is an example of the Genesys system& L. Fournier, “Genesys-X86: An Automatic Test-Program

ability to take a problem encountered in a particular situation an@enerator for X86 MicroprocessorfBM Haifa Research Center
quickly generate a group of tests that cover all the relevanfLSI Internal Publication
instructions and associated modes. In the above group, the F. Casaubieilh, A. Mclsaac, M. Benjamin, M. Bartley, F.
problem addressed was the handling of the #lk operand in thi®ogodalla, F. Rocheteau, M. Belhadj, J. Eggleton, G. Mas, G.
pipeline, as affected by the wait states. Barret, C. Berthet, “Functional Verification Methodology of

L . Chameleon Processorin Proc. ACM/IEEE 33rd Design
5.3 Further Verification Using Genesys Automation Conference 1996

__Be_yond the rapi_d involvement O_f Gene_sys in the initigl . “Microcontrollers that offer the power of choic&lectronic
verification of the architecture for each instruction and address'r@ngineering April 1994.

mode, as described above, the power and responsiveness of éhe Texas Instruments “TMS320C54x Users Guide

A. Aharon, Dave G, M. Levinger, Y. Lichtenstein, Y. Malca,
. Metzger, M. Molcho, and G. ShurekTest Program Generation

Preliminary”1995

1. The architecture defines 187 instructions. However, for simplicity
reasons, in Genesys knowledge-base some of the original instructions
were modeled as several instructions.

