
FAST CONSTRUCTION OF TEST-PROGRAM GENERATORS
FOR DIGITAL SIGNAL PROCESSORS

Shai Rubin, Moshe Levinger Randall R. Pratt, William P. Moore
IBM Research Division, Haifa Research Lab IBM Microelectronics Division, Essex Junction, Vt.

rubin@haifa.vnet.ibm.com rrpratt@vnet.ibm.com

Abstract

Test-program generators play a key role in hardware
functional verification of large scale processors. However, in the
DSP domain, the usage of full-blown test-program generators is
much less popular, mainly due to the limited resources (time and
money) available when developing such systems. This paper
describes a work-model for the fast, low cost construction of a
test-program generator for DSPs. The core technology uses
Genesys, a known test program generator that, until now, has been
used for the verification of large scale processor families, such as
PowerPC and x86. We developed the model while using Genesys
for verification of the IBM C54XDSP, a recently-announced fixed-
point DSP. The case study shows that it is possible to build a full
test-program generator in a very short time and thus achieve better
verification coverage in spite of the shorter development time.

1. INTRODUCTION
The goal of processor verification is to ensure equivalence of

a processor and its architectural specification. In practice,
processor verification is carried out by simulating a relatively
small subset of selected test programs. These programs are run
through the design simulation model and the results are compared
with the output predicted by the architecture simulation model.
Automatic test-program generators are used in order to produce
massive and qualitative test-program subsets [1].

Usually, when developing a new processor ones implements
its own architecture-specific test program generator. The Genesys
system takes a different approach. It is a generic, architecture
independent test-program generation system [2]. A formal model -
the Genesys knowledge base - lies at the heart of the system. It
allows for the specification of most of the architectural
components which may be found in target processor architectures.
As a result, the system can be used as a test-program generator for
a wide range of processors and architectures.

Genesys was originally devised to cope with very complex,
large-scale, processor systems [1,3]. It has a variety of capabilities
targeted at verifying complex mechanisms, such as Memory
Management Units (MMU - virtual memory), cache protocols and
hierarchies, multi-processor configurations, etc. During the last six
years, Genesys has been widely used on many IBM products all
over the world and was recognized as a key tool for hardware
verification by a non-IBM customers like SGS-Thomson [4].

In this paper, we show that the use of the Genesys system as
a test-generator can be extended to many other processors and
architectures, and in particular, to less complex ones, such as
DSPs. We propose a work-model that is particularly useful and
suitable for fast construction of test-program generators for this
family of simpler processors. The proposed work model calls for

the use of already available technology and tools instead of
investing time and money building specific tools.

The paper is organized as follows: Section 2 illustrates the
main characteristics which render Genesys and our work-model a
feasible and effective solution for the DSP domain. Section 3
presents the infra-structure of the Genesys system and its main
features. Section 4 proposes the process required for constructing a
test-program generator based on the Genesys system. Section 5
describes a case study where a Genesys system was constructed for
the IBM C54XDSP[6]. Section 6 concludes the paper.

2. REQUIREMENTS FOR A TEST PROGRAM
GENERATOR FOR DSPs

In opposite to large scale processor families (e.g., IBM’s
PowerPC Intel’s x86), DSPs are characterized with short
development schedule and the low price per unit [5]. These impose
two fundamental requirements on an automatic test-program
generator:

• The development period required for constructing a test-program
generator must be very short in order to meet the verification
demands of a relatively short design schedule.

• The cost of developing an automatic generator for a DSP project
should not be too expensive.

Thus, for a test-program generator to become the main
verification tool in a DSP project, it must successfully meet the cost
and schedule requirements. The Genesys system and our proposed
work-model lend themselves well to this task. Firstly, Genesys is a
mature platform with a high level of architecture expressiveness.
This implies that Genesys can easily encompass new architectures
using its current modeling power. Secondly, the work-model
proposed in this paper allows the user to play a significant part in
the construction of the test-program generator. This reduces the cost
of building the generator system and enables users to add their own
testing expertise to the tool. Furthermore, Genesys is a generic tool
that after the first investment (cost and system foundation), can be
used to verify every processor a company might develop in the
future. This fact reduce even more the cost of test-generators for the
next processor generations.

3. THE GENESYS SYSTEM
The Genesys system consists of the following four basic

interacting components (Fig. 1):

a. The engine of the system - a generic, architecture oblivious,
test-program generator [1,2].

b. A knowledge base - an external specification which holds a
formal and declarative representation of the targeted
architecture and a procedural description of thetesting
knowledge required for its verification.

c. An architecture (behavioral) simulator used to predict the

results of the instruction execution.
d. A GraphicalUser Interface (GUI).

Figure 1.System Components and Interrelation

The system supports two main usage modes: Global
GenerationandSpecific Generation. Global Generation directives
apply to the instructions selected for the test and enable the user to
direct the generation process towards interesting areas in order to
exercise different architecture and implementation mechanisms
(e.g., memory accesses, exceptions, etc.). Specific Generation
mode allows the user to specify highly delicate test scenarios,
where many constraints are placed on the generation process.

The task of the generator is twofold: first, to generate a test-
program that meets all the predefined constraints; second, to
complete the specific scenario generation using its biased-random
capabilities whenever something was not specified.

Several of the major features and capabilities available in the
generator are listed below:

1. Instruction Stream - The user can select the set of instructions
to be used in the generated test-program.

2. Exception Control - The user may control the frequency of
each exception type in the test.

3. Resource Sharing - Using this feature, the user can direct the
generator to generate instruction sequences which (re-)use the
same resources intensively (i.e., registers, memory locations, etc.)
within a small “window” in the instruction stream.

4. Data-Types - The user may invoke testing knowledge
procedures (generation functions) which will affect the data
selected for the operands of the instructions generated in the test.

5. Macros - The user can define test patterns that will invoke
specific parameters during the generation process.

6. Loops - The user may define test scenarios which include
various types of loops.

7. Value Enumeration - The user may ask the generator to
enumerate all of the relevant values for a given test entity (for
example, enumerate all operand data, enumerate possible
exceptions, etc.).

3.1 The Genesys Knowledge Base
The Genesys knowledge base is a hierarchical database

representing the architectural details and the specific testing
knowledge of the design. The first part of the knowledge base
contains a description of the architecture. The major classes
represent the main processor constituents, such as: Instructions,
Operands, Formats, Fields, Exceptions and Registers. For each of
these classes, there exists a template of attributes which allows an

accurate definition of the desired object. The entire specification of
the architecture is done in a declarative fashion. This leads to a
simple scheme for knowledge base population and facilitates the
construction of new Genesys systems.

The second part of the knowledge base contains the testing
knowledge. This part enables the expert user to add testing
expertise to the architectural model. This specific knowledge,
either architectural or implementation-dependent, is used by the
generator during the instruction generation process. An example of
such knowledge is the infinity value for floating point operations.
Special functions can be easily added into the knowledge base in
order to ensure generation of such values for the various Floating
Point instructions. A detailed description of the knowledge-base
can be found at [1,2,4].

From the above discussion, the reader should note the
following main observation:

The power of Genesys is inherently found in two main
components: the generic engine and the knowledge base. However,
the generic engine can supply extensive verification capabilities
even when working with a minimal knowledge base, i.e., one that
contains only a few instructions and no testing knowledge.

This fact enables us to rapidly build a verification
environment for DSPs. As soon as the designer has a knowledge
base with only few instructions, verification can begin. During the
verification process, the designer may continue to add more
instructions and testing expertise into the tool. This leads to the
suggested work-model described in the next section.

4. THE WORK-MODEL
The final goal of the work-model is to build a complete

verification environment (Figure 2). Due to the short period
allocated to the development effort, the process has to be
incremental, fast and productive from the very first stages.

Figure 2.Genesys-based Verification Environment

The main purpose of the work-model is to allow designers to
use partial versions of the generator as early as possible. As a
result, the verification process may begin even before all stages
have been completed. The verification group’s heavy involvement
in the Genesys construction process not only contributes to the
rapid construction effort, but also develops expertise in the tool as
well as in the design’s architecture, thus increasing the quality of
the system.

The first step in the process is to build an operational system
that generates legal tests for the design. The definition of a legal
test, in this case, is a test-program that is completely consistent
with the architecture’s specification. Although the tests generated
at this time are mostly random, all the internal power of Genesys is
already available. The following six stages describe this part of the
process (stages 3-5 may be done in parallel).

1. Architecture study. The Genesys expert becomes familiar with
the essential parts of the architecture. The instruction set is divided

Knowledge Base
and
Testing Knowledge

Architecture
Simulator

Test-Program
Generator

User
Interface

Design simulation
Genesys output - a test.

Compare results

Genesys system

into two sets: Set A and Set B. Set A contains instructions whose
modeling is straightforward; they can be generated in a fully
random manner (similar to arithmetic instructions). Set B consists
of instructions that are more tailored to the specified architecture
and in some cases these instructions will be generated only in user-
supervision mode.

2. Building the initial (NOP) system. In this step, all system
components are established. A basic knowledge base is created
and any changes necessary are made to the Genesys engine. This
stage is done using a NOP-simulator - a simple simulator that fully
supports the Genesys requirements, but treats every instruction as
a NOP. Using this kind of simulator enables the team to build a
complete system, even in cases where the behavioral simulator is
not ready for use at this early point in the design. The initial
system serves two main purposes:

• Learning - The verification team starts learning how to use
Genesys and what it is capable of.

• Beginning integration - The first steps towards integrating the
Genesys system into the whole verification environment are
performed. For example, establishing the link between Genesys
and the design simulation model (usually VHDL/Verilog),
writing a preliminary version of the API between Genesys and
the architecture’s behavioral simulator, etc.

3. Detailed design of Set A instructions. The design describes the
architecture in a way that is consistent with the knowledge base
hierarchy. This stage requires an in-depth understanding of the
architecture and is carried out by both the verification and Genesys
teams.

4. Integration with the behavioral simulator. After constructing the
initial (NOP) system, the team integrates the behavioral simulator
with Genesys. The work-model assumes that a functional
behavioral simulator is already available to the design project for
software development purposes. In this case, only the simulator
API required by Genesys needs to be implemented.

5. Establishing the Genesys-based simulation environment. Some
work is usually required in order to convert Genesys outputs (the
test cases) to the inputs of the design model. By using the test
cases produced by the initial system, the verification team is now
ready to integrate Genesys into the verification environment.

After completing steps 1-5 (in the case study, these stages
took about a month), the first random test may be generated and
fully simulated by the design model. Although the system consists
of very few instructions, all the inherent capabilities of Genesys
can be used in these tests. For example, full addressing-mode
support, interdependency between instructions, long and random
tests, etc.

6. Testing Knowledge.After the population of Sets A and B is
complete, and the simulation environment has been implemented,
the extension of the Genesys knowledge-base through the use of
Testing Knowledge (TK) becomes an on-going process. Applying
TK to the system helps focus the testing onto critical, sensitive
areas, and prevents the generator from testing invalid cases, e.g,
division by 0, if that is not supported by the architecture. Addition
of TK continues through the completion of the verification plan.

The expertise developed in all aspects of Genesys can be
carried effectively from project to project and serves to streamline

subsequent applications of Genesys.

Figure 3 presents the complete process and all the stages
required to establish the full-blown test generator.

Figure 3. Actions and People Involved in the Construction of the
Generator

5. CASE STUDY: BUILDING A GENESYS
SYSTEM FOR THE IBM C54XDSP

This section describes the results when our suggested work-
model was applied to a general-purpose DSP, the IBM
C54XDSP[6]. The end of this section describes how Genesys was
used to implement the verification plan.

The C54XDSP is fully compatible with the well-known C54x
Texas Instruments DSP family. The C54x architecture includes a
highly specialized instruction set of 187 instructions. The
processor contains no cache nor MMU, but does include three
separate memory spaces for instructions, data, and I/O, as well as
multiple buses.

5.1 Constructing the Genesys System - Results
The entire test-program construction process took 3-4

person months (Table 1). The final output of the process is a
Genesys system which can generate random tests on over 90% of
the instruction set. Tests for the rest of the instruction set can still
be generated by the system, but only within a specific generation
mode, since control and supervision by the user are required.

Stage Time Remarks

Arch - study 1 week Set A includes 150 instructions
Set B includes 37 instructions

NOP-and ini-
tial system

1 week 100 lines of C code

Set A design 1 week 150 instructions with 73 different
formats

Construction
of verification
environment

1 week Done at the verification site
through the combined effort of the
Genesys people and the verification
team

Set A popula-
tion

1 month The verification itself can start
immediately after populating the
first instructions

Set B design 1 week

Arch - study

Set A designBuild verification
environment

Set A population
Set B design

Verification

Set B population Full verification plan

TK populationVerification team responsibility

Genesys experts responsibility Combined teams

On-going Process

Integration with

Initial (NOP) System

the simulator

 Table 1.Stages and figures for the building process of the
Genesys-IBM C54XDSP

5.2 Implementation of the Preliminary Verification Plan
The purpose of the preliminary verification plan is to verify

that the basic parts of the design and the verification methodology
work properly. Basic parts are considered to be the opcodes (that
are currently supported in the design) and the address modes.

The application of Genesys to verification of the C54XDSP
began after parts of the design were already implemented and
partially verified. Thus, the Group 1 tests below were omitted. The
Group 2 tests were the primary debug vehicle (preliminary
verification) of the Genesys database, test generation, and
verification environment. At this time, architectural verification of
the design was productive in finding design errors.

The following groups of tests for the preliminary verification
plan were defined as described below:

• Group 1: For each instruction, one instance of the instruction
was used per test. This would validate the database and the
model. As discussed above, this group of tests was skipped.

• Group 2: For each instruction, ten instances of the instruction
were used, separated by 3 NOPs (no-op instructions). NOPs
were used to avoid pipeline and latency issues. There were 4771

different tests generated.
• Group 3: For each instruction that used the indirect addressing

mode, one instance of the instruction was used for each of the
valid (between 12 and 16) addressing modes. There were 254
tests generated.

• Group 4: For each instruction that used the #lk (long constant)
form of indirect addressing, one instance of each #lk addressing
format was used, for each of the 8 possible wait state values on
the external bus. There were 170 tests generated.

The latter group is an example of the Genesys system’s
ability to take a problem encountered in a particular situation and
quickly generate a group of tests that cover all the relevant
instructions and associated modes. In the above group, the
problem addressed was the handling of the #lk operand in the
pipeline, as affected by the wait states.

5.3 Further Verification Using Genesys
Beyond the rapid involvement of Genesys in the initial

verification of the architecture for each instruction and addressing
mode, as described above, the power and responsiveness of the

Genesys system can also be applied to the following areas:

• Data Dependency tests - Using Genesys’ random generation of
the operands, coupled with the appropriate testing knowledge,
both boundary conditions in the architecture, as well as
unsuspected data sensitivities in the design can be tested.

• Random instruction streams - These types of tests have been
very effective in detecting subtle bugs, especially in the areas of
stalls. While there are inherent restrictions in the architecture on
adjacent pairs of instructions, this type of (often intelligently
directed, but also random) testing has proven quite beneficial.

5.4 Results
Genesys tests uncovered approximately 100 design errors in

the design, in spite of having started after many opcodes and
functions had already been verified. A total of 1814 tests were
generated for the Groups discussed above. These tests are a key
part of the static regression suite. A total of more than 75,000 Data
Dependency and Random tests have also been run to date. The
rapid integration of Genesys into the Verification Plan was critical
to the successful verification of the IBM C54XDSP.

6. CONCLUSION
In this paper we described a work-model and a six stage

process for fast construction of test-program generators based on
the Genesys platform. This framework can be highly effective for
constructing a test-generator for DSPs. The proposed work-model
enables the construction of a full-blown, test-program generator
within the cost and development time requirements of a DSP
design. This work-plan was used in the verification of the
C54XDSP. The use of Genesys and the work-model enabled an
efficient implementation of the preliminary verification plan in a
very short time and help to find many bugs, some of which are
considered hard to find. The results obtained from this case-study
reaffirm our claim regarding the speed and cost of building test-
generator systems for DSPs. Furthermore, the proposed system is
a long term investment since it can be used for verification of
various processors and their future generations.

7. REFERENCES
1. A. Aharon, Dave G, M. Levinger, Y. Lichtenstein, Y. Malca,
C. Metzger, M. Molcho, and G. Shurek,“ Test Program Generation
for Functional Verification of PowerPc Processors in IBM” in
Proc. ACM/IEEE 32nd Design Automation Conference 1995.
2. Y. Lichtenstein, Y. Malca, A Aharon, “Model Based Test
Generation for Processor Verification”IBM Technical Report
88.337 1993.
3. L. Fournier, “Genesys-X86: An Automatic Test-Program
Generator for X86 Microprocessors”IBM Haifa Research Center
VLSI Internal Publication.
4. F. Casaubieilh, A. McIsaac, M. Benjamin, M. Bartley, F.
Pogodalla, F. Rocheteau, M. Belhadj, J. Eggleton, G. Mas, G.
Barret, C. Berthet, “Functional Verification Methodology of
Chameleon Processor”in Proc. ACM/IEEE 33rd Design
Automation Conference 1996.
5. “Microcontrollers that offer the power of choice”Electronic
Engineering April 1994.
6. Texas Instruments, “TMS320C54x User’s Guide
Preliminary”1995.

Set B popula-
tion

1 week Requires close guidance by Gene-
sys experts

Full verifica-
tion plan

2 months For certain instructions and func-
tions, much of this can be done in
parallel with other stages, as the
instructions mature.

Testing
Knowledge

On-going This extends throughout the life of
the verification plan.

1. The architecture defines 187 instructions. However, for simplicity
reasons, in Genesys knowledge-base some of the original instructions
were modeled as several instructions.

Stage Time Remarks

