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ABSTRACT

Several approaches have previously been taken to the probleré'
of discriminating between speech and music signals. These;
have used different features as the input to the classifier an%'
have tested and trained on different material. In this paper We5:
examine the discrimination achieved by several different

Limited Bandwidth

Alternate Voiced And Unvoiced Sections

Limited Range Of Pitch

Syllabic Duration Of Vowels

Energy Variations Between High And Low Levels

fea‘“'_“?s using common fraining and test sets and th_e Samg g indirectly using the amplitude, pitch and periodicity
classifier. The database assembled for these tests 'nCIUdeéstimate of the waveform to carry out the detection process

speech from thirteen languages and music from all over the

since zero-crossings give an estimate of the dominant

world. In each case the distributions in the feature space Were}requency in the waveform [2]

modelled by a Gaussian mixture model. Experiments were
carried out on four types of feature, amplitude, cepstra, pitch
and zero-crossings. In each case the derivative of the featur
was also used and found to improve performance. The bes
performance resulted from using the cepstra and delta cepstr
which gave an equal error rate (EER) of 1.2%.
closely followed by normalised amplitude and delta

amplitude. This however used a much less complex model.
The pitch and delta pitch gave an EER of 4% which was
better than the zero-crossing which produced an EER of 6%.

1. INTRODUCTION

Automatic discrimination between speech and music hass.
become a research topic of interest in the last few years.7.
Several approaches have been described in the receng,
literature [1,3,4]. Each of these uses different features andg.

agrwNPE

pattern classification techniques and describes results oniQ.
In this paper we make a comparison of 11.
several of the different features previously suggested in12.
addition to some we believe have useful properties. We carry13.

different material.

out these tests on the same data and use the same type of

In reference [3] Zue and Spina use an average of the cepstral
Qoefficients over a series of frames. This is shown to work

ell in distinguishing between speech and music when the
. %peech is band-limited to 4kHz and the music to 16kHz but
This was less well when both signals occupied a 16kHz bandwidth.

Scheier and Slaney [4] use a variety of features. These are
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classifier. In this way we attempt to provide a comparative The first two features are amplitude related. The next six
view of the value of the different types of features in speech features are derived from the fine spectrum of the input signal
music discrimination. We start by reviewing the published and therefore are related to the techniques described in the
material and then justify the inclusion of prosodic features reference [3]. Features 9 and 10 use the zero-crossing rate in
which we believe to be important. common with reference [1].

Saunders [1] has described a speech music discriminatotConsidering that the chief difference between speech and
based on zero-crossings. Its suggested application is fomusic, at least in the form of singing, is the difference in the
discrimination between advertisements and programmes inprosody of the signal it is surprising that none of the work so
radio broadcasts. Since it is intended to be incorporated infar has used pitch and amplitude features explicitly. A

consumer radios it is intended to be low cost and simple. It ispreliminary investigation of a selection of typical speech and
mainly designed to detect the characteristics of speech whichmusic files showed that the distribution of the first differential

are described as, of the pitch is different for speech and music. The music



distribution has a strong concentration about zero delta pitchsmoothed using backward and forward pitch tracking to
corresponding to steady notes and a significant occurrence ofestrict inter-frame variations. The algorithm was modified to
large pitch changes corresponding to shifts between notesprovide an estimate every 10 ms, the frame rate of the acoustic
The pitch changes in speech were more evenly distributed. Aanalysis. The smoothed pitch estimate is refined to produce a
similar but less pronounced difference is also observable forfinal pitch estimate accurate to 0.25 of a sample period. The
the delta amplitude. Hence a comparison is made between theitch refinement algorithm uses a frequency domain matching

use of the following features in a music detector, technique to optimise a windowed periodic pulse train to the
input speech, the pitch period corresponding to the inter-pulse

1. Cepstral Coefficients interval. The high resolution results from the spectral match

2. Delta Cepstral Coefficients at the high frequency harmonics.

3.  Amplitude L . . .

P . The estimation of pitch produced by the algorithm is most

4. Delta Amplitude . . . . .

5.  Pitch reliable in voiced regions of speech and musical notes of

6. Delta Pitch reasonable duration.

7. Zero-Crossing Rate .

8. Delta Zero-Crossing Rate 2.4 Zero-Crossings

. - ) - i f re w Icul mming th
The pitch and cepstral coefficients encompass the fine andThe zero-crossing feature was calculated by su g the

broad spectral features respectivel The zero-crossin zero-crossings over a 10ms frame. The delta zero-crossing
P °SP Y. . Ywas calculated by estimating the trend of the zero-crossing
parameters and the amplitude were believed worthy of

! o . : . . over five successive frames.
investigation as a computationally inexpensive alternative to
the other features.

> EEATURE ESTIMATION 3. EXPERIMENTAL CONFIGURATION

2.1 Cepstral Coefficients 3.1 Database

. . . The experiments described in the following section were
The cepstral analysis used in the experiments was as folloWS 5 e out using a database of music and speech. Al of the
The data was sampled at 8kHz and was then filtered using &peech material was conversational and included examples
filterbank containing nineteen filters. The filterbank had a from both genders. The following languages were
mel scale characteristic. The log power outputs of the represented, American English, Arabic, English, Farsi,
filterbank were transformed into twelve cepstral coefficients rranch  German.  Hindi Japanese, Korean, Mandarin
and twelve delta cepstral coefficients at a frame rate of 10ms'Spanis,h Tamil e;nd Vie£namese. +here Wer’e 2370 10é

The delta cepstra were calculated by estimating the trend Ofyqining files for speech and 2107 10s test files giving about
the cepstra over five successive frames.

_ / _ Cepstral meary, ho s of speech in each case.
subtraction was applied to each of the test files to ensure that

the classifier did not use channel information to distinguish The music was predominately a diverse selection of Western

between the two types of signal. music including classical, popular and jazz.  However
examples of music from Eastern Asia, the Arab world, Africa,
2.2 Amplitude Features South America and the Indian sub-continent were also

included. There were 1529 10s training files and 1388 10s
These coefficients were the filterbank energy and delta test files for music giving about four hours of material in each
energy. The features were normalised over a test file so thatase. Both the speech and music signals were band-limited to
the absolute amplitude of the material did not effect the 4kHz and sampled at an 8kHz rate.
results by allowing the classifier to use level information to
distinguish between the two types of signal. The delta 3.2 Experimental System
amplitude was calculated by estimating the trend of the

amplitude over five successive frames. Pattern classification was carried out using Gaussian Mixture
Models (GMM) [8]. Each of the possible classes of signal,
2.3 Pitch Features speech or music, were represented by a GMM trained on the

training set using the expectation maximisation algorithm.
The pitch estimation algorithm was similar to that used for The variances of the distributions were modelled by a
IMBE speech coding [5]. This has been found to be an diagonal covariance matrix. Tests were carried out to
effective technique for pitch estimation in our previous work establish the optimum number of mixtures in the models for
on gender and speaker identification [6,7]. each of the features. The score for each test file was computed

. . - . ) as the difference in log likelihood ratio,
This technique calculates an initial pitch estimate by 9

correlating the 1kHz low pass filtered signal with delayed S, =Ly L
versions of the same signal. The correlation peaks occur at
multiples of the pitch period. This initial estimate is whereLn, and Is are the likelihood scores for music and
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Figure 1 DET Plot for Cepstral Features Figure 2 DET Plot for Amplitude Features

speech. The scores were then used to generate Receivenodelled using a 64 mixture GMM. As can be seen from the
Operating Characteristics and plotted as a Detection ErrorDET plots of Figure 1, the spectral derivative represented by

Trade-off curve[9]. the delta cepstra outperformed the static feature while using
both features gave a further improvement. However this was
4. EXPERIMENTS small indicating a strong correlation between the information

represented by these feature sets.

4.1 Cepstral Coefficients 4.2 Amplitude Features

The number of mixtures in the GMMs used to model the _. 2 sh the DET plots for th litude feat Th
speech and music signals was increased from one to sixty foflgur_e shows the plots for the amplitude teatures. - the
at which point little performance improvement was seen. The amplitude feature alone gave surprisingly good performance

distributions of the cepstra and delta cepstra were henc articularly since the models had single Gaussian mixtures.
he delta-amplitude alone achieved an equal error rate below

2% and equal to the delta cepstra with a fraction of the
Feature Statistiq  Musi Speegh EER (% computational complexity. Combining both parameters into a

two dimensional feature vector and modelling the feature

Amp. H 0.00 0.00 3.5 space with a single Gaussian resulted in an EER of 1.7%.
1.14 2.50 .
° 4.3 Pitch Features
Delta Amp. V] 0.00 0.00 2

Figure 3 shows the DET plots for the pitch features modelled
o 0.02 0.53 by a sixteen mixture GMM. Above sixteen mixtures the

performance of the GMMs used to model the pitch features

Zero-Crossing H 0.18 0.17 20 deteriorated. Both the pitch and the delta pitch give similar
ol 0.10 0.13 performance. However, the combination of the features
results in a significant improvement in performance with an
Delta Zero- vl 0.00 0.00 13 EER of about 4%.
Crossing
o 019 033 4.4 Zero-Crossings
Pitch m 75 52 9 Results for the two zero-crossing parameters are shown in
Figure 4. The zero-crossing distribution was modelled by a
o) 27.3 21.7 single Gaussian while four Gaussian mixtures were used to
Delta Pitch " 028 0.05 75 model the derivative distribution and the distribution of both

parameters.  Although computationally inexpensive these

o 61.5 53.5 parameters performed least well. Even when the zero-

— : : crossing features were combined, the resultant EER barely
Table 1 Statistics of the Gaussian Mixtures for Three  matched the performance of a single parameter set of the other
Types of Features feature types.
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example speech or speaker recognition.

5. DISCUSSION

We are of the opinion that there is a degree of independence

Table 1 shows the means and standard deviations of a singl@etween the different features we have reported in the paper.
mixture model for the uni-dimensional features. As expected Hence the features could be combined into a larger vector or
the means of the delta features and the normalised amplitudéhe scores from the different models can be fused to give
are zero for both speech and music. Discrimination in theseimproved performance. We intend to report on this in a future

cases is provided by the variance of the distributions alone.paper.

The ratio of the variances of the delta amplitude for speech
and music is particularly high accounting for the excellent
performance of this feature. It appears that music in general
has very little amplitude variation between frames when
compared with the speech signal. There is less difference in1]
variances for the other parameters resulting in less
discriminating ability. [2]

For the pitch, signal discrimination is mainly produced by the
difference between the means of the speech and music[3]
distribution. The pitch and the delta pitch are extracting two
different aspects of the signals, their difference in average
value and the expected rate of change. This would explain the[4]
larger improvement shown by the combination of these
features.

The zero-crossing rates of the signals are not a goodl[5]
discriminator between speech and music. The difference in
the statistics of the zero-crossing rate for the two signals is[6]
small accounting for its poor performance.

4
Because of the higher dimensionality of the feature space anJ ]
the increased complexity of the model it is more difficult to
infer which of the cepstral information is providing the 8]
discrimination between the signals. However visual
examination of the spectrograms for speech and music
indicate that the music spectrum changes much more slowly[g]
from frame to frame than the speech spectrum. Hence the
very good performance from the delta features. The cepstra
require more computation than the amplitude features or zero
crossings. This disadvantage will often be nullified since the
cepstra will be required for other processing of the signal for
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