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ABSTRACT
Several approaches have previously been taken to the problem
of discriminating between speech and music signals.  These
have used different features as the input to the classifier and
have tested and trained on different material.  In this paper we
examine the discrimination achieved by several different
features using common training and test sets and the same
classifier.  The database assembled for these tests includes
speech from thirteen languages and music from all over the
world.  In each case the distributions in the feature space were
modelled by a Gaussian mixture model.  Experiments were
carried out on four types of feature, amplitude, cepstra, pitch
and zero-crossings.  In each case the derivative of the feature
was also used and found to improve performance.  The best
performance resulted from using the cepstra and delta cepstra
which gave an equal error rate (EER) of 1.2%.  This was
closely followed by normalised amplitude and delta
amplitude.  This however used a much less complex model.
The pitch and delta pitch gave an EER of 4% which was
better than the zero-crossing which produced an EER of 6%.

1. INTRODUCTION

Automatic discrimination between speech and music has
become a research topic of interest in the last few years.
Several approaches have been described in the recent
literature [1,3,4].  Each of these uses different features and
pattern classification techniques and describes results on
different material.  In this paper we make a comparison of
several of the different features previously suggested in
addition to some we believe have useful properties.  We carry
out these tests on the same data and use the same type of
classifier.  In this way we attempt to provide a comparative
view of the value of the different types of features in speech
music discrimination.  We start by reviewing the published
material and then justify the inclusion of prosodic features
which we believe to be important.

Saunders [1] has described a speech music discriminator
based on zero-crossings.  Its suggested application is for
discrimination between advertisements and programmes in
radio broadcasts.  Since it is intended to be incorporated in
consumer radios it is intended to be low cost and simple.  It is
mainly designed to detect the characteristics of speech which
are described as,

1. Limited Bandwidth
2. Alternate Voiced And Unvoiced Sections
3. Limited Range Of Pitch
4. Syllabic Duration Of Vowels
5. Energy Variations Between High And Low Levels

It is indirectly using the amplitude, pitch and periodicity
estimate of the waveform to carry out the detection process
since zero-crossings give an estimate of the dominant
frequency in the waveform [2].

In reference [3] Zue and Spina use an average of the cepstral
coefficients over a  series of frames.  This is shown to work
well in distinguishing between speech and music when the
speech is band-limited to 4kHz and the music to 16kHz but
less well when both signals occupied a 16kHz bandwidth.

Scheier and Slaney [4] use a variety of features.  These are

1. Four Hertz Modulation Energy
2. Low Energy
3. Roll Off Of The Spectrum
4. The Variance Of The Roll Off Of The Spectrum
5. Spectral Centroid
6. Variance Of The Spectral Centroid
7. Spectral Flux
8. Variance Of The Spectral Flux
9. Zero-Crossing Rate
10. The Variance Of The Zero-Crossing Rate
11. The Cepstral Residual
12. The Variance Of The Cepstral Residual
13. The Pulse Metric

The first two features are amplitude related.  The next six
features are derived from the fine spectrum of the input signal
and therefore are related to the techniques described in the
reference [3].  Features 9 and 10 use the zero-crossing rate in
common with reference [1].

Considering that the chief difference between speech and
music, at least in the form of singing, is the difference in the
prosody of the signal it is surprising that none of the work so
far has used pitch and amplitude features explicitly.  A
preliminary investigation of a selection of typical speech and
music files showed that the distribution of the first differential
of the pitch is different for speech and music.  The music



distribution has a strong concentration about zero delta pitch
corresponding to steady notes and a significant occurrence of
large pitch changes corresponding to shifts between notes.
The pitch changes in speech were more evenly distributed.  A
similar but less pronounced difference is also observable for
the delta amplitude.  Hence a comparison is made between the
use of the following features in a music detector,

1. Cepstral Coefficients
2. Delta Cepstral Coefficients
3. Amplitude
4. Delta Amplitude
5. Pitch
6. Delta Pitch
7. Zero-Crossing Rate
8. Delta Zero-Crossing Rate

The pitch and cepstral coefficients encompass the fine and
broad spectral features respectively.  The zero-crossing
parameters and the amplitude were believed worthy of
investigation as a computationally inexpensive alternative to
the other features.

2. FEATURE ESTIMATION

2.1 Cepstral Coefficients

The cepstral analysis used in the experiments was as follows.
The data was sampled at 8kHz and was then filtered using a
filterbank containing nineteen filters.  The filterbank had a
mel scale characteristic.  The log power outputs of the
filterbank were transformed into twelve cepstral coefficients
and twelve delta cepstral coefficients at a frame rate of 10ms.
The delta cepstra were calculated by estimating the trend of
the cepstra over five successive frames.  Cepstral mean
subtraction was applied to each of the test files to ensure that
the classifier did not use channel information to distinguish
between the two types of signal.

2.2 Amplitude Features

These coefficients were the filterbank energy and delta
energy.  The features were normalised over a test file so that
the absolute amplitude of the material did not effect the
results by allowing the classifier to use level information to
distinguish between the two types of signal.  The delta
amplitude was calculated by estimating the trend of the
amplitude over five successive frames.

2.3 Pitch Features

The pitch estimation algorithm was similar to that used for
IMBE speech coding [5].  This has been found to be an
effective technique for pitch estimation in our previous work
on gender and speaker identification [6,7].

This technique calculates an initial pitch estimate by
correlating the 1kHz low pass filtered signal with delayed
versions of the same signal.  The correlation peaks occur at
multiples of the pitch period.  This initial estimate is

smoothed using backward and forward pitch tracking to
restrict inter-frame variations.  The algorithm was modified to
provide an estimate every 10 ms, the frame rate of the acoustic
analysis.  The smoothed pitch estimate is refined to produce a
final pitch estimate accurate to 0.25 of a sample period.  The
pitch refinement algorithm uses a frequency domain matching
technique to optimise a windowed periodic pulse train to the
input speech, the pitch period corresponding to the inter-pulse
interval.  The high resolution results from the spectral match
at the high frequency harmonics.

The estimation of pitch produced by the algorithm is most
reliable in voiced regions of speech and musical notes of
reasonable duration.  

2.4 Zero-Crossings

The zero-crossing feature was calculated by summing the
zero-crossings over a 10ms frame.  The delta zero-crossing
was calculated by estimating the trend of the zero-crossing
over five successive frames.

3. EXPERIMENTAL CONFIGURATION

3.1 Database

The experiments described in the following section were
carried out using a database of music and speech.  All of the
speech material was conversational and included examples
from both genders.  The following languages were
represented, American English, Arabic, English, Farsi,
French, German, Hindi, Japanese, Korean, Mandarin,
Spanish, Tamil and Vietnamese.  There were 2370 10s
training files for speech and 2107 10s test files giving about
six hours of speech in each case.

The music was predominately a diverse selection of Western
music including classical, popular and jazz.  However
examples of music from  Eastern Asia, the Arab world, Africa,
South America and the Indian sub-continent were also
included.  There were 1529 10s training files and 1388 10s
test files for music giving about four hours of material in each
case.  Both the speech and music signals were band-limited to
4kHz and sampled at an 8kHz rate.

3.2 Experimental System

Pattern classification was carried out using Gaussian Mixture
Models (GMM) [8].  Each of the possible classes of signal,
speech or music, were represented by a GMM trained on the
training set using the expectation maximisation algorithm.
The variances of the distributions were modelled by a
diagonal covariance matrix.  Tests were carried out to
establish the optimum number of mixtures in the models for
each of the features. The score for each test file was computed
as the difference in log likelihood ratio,

S L Lm m s= −

where Lm, and  Ls  are the likelihood scores for music and



speech.  The scores were then used to generate Receiver
Operating Characteristics and plotted as a Detection Error
Trade-off curve[9].

4. EXPERIMENTS

4.1 Cepstral Coefficients

The number of mixtures in the GMMs used to model the
speech and music signals was increased from one to sixty for
at which point little performance improvement was seen. The
distributions of the cepstra and delta cepstra were hence

modelled using a 64 mixture GMM.  As can be seen from the
DET plots of Figure 1, the spectral derivative represented by
the delta cepstra outperformed the static feature while using
both features gave a further improvement.  However this was
small indicating a strong correlation between the information
represented by these feature sets.

4.2 Amplitude Features

Figure 2 shows the DET plots for the amplitude features.  The
amplitude feature alone gave surprisingly good performance
particularly since the models had single Gaussian mixtures.
The delta-amplitude alone achieved an equal error rate below
2% and equal to the delta cepstra with a fraction of the
computational complexity.  Combining both parameters into a
two dimensional feature vector and modelling the feature
space with a single Gaussian resulted in an EER of 1.7%.

4.3 Pitch Features

Figure 3 shows the DET plots for the pitch features modelled
by a sixteen mixture GMM. Above sixteen mixtures the
performance of the GMMs used to model the pitch features
deteriorated.  Both the pitch and the delta pitch give similar
performance.  However, the combination of the features
results in a significant improvement in performance with an
EER of about 4%.

4.4 Zero-Crossings

Results for the two zero-crossing parameters are shown in
Figure 4.  The zero-crossing distribution was modelled by a
single Gaussian while four Gaussian mixtures were used to
model the derivative distribution and the distribution of both
parameters.  Although computationally inexpensive these
parameters performed least well.  Even when the zero-
crossing features were combined, the resultant EER barely
matched the performance of a single parameter set of the other
feature types.
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Figure 1 DET Plot for Cepstral Features
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Figure 2 DET Plot for Amplitude Features

Feature Statistic Music Speech EER  %

Amp. µ 0.00 0.00 3.5

σ 1.14 2.50

Delta Amp. µ 0.00 0.00 2

σ 0.02 0.53

Zero-Crossing µ 0.18 0.17 20

σ 0.10 0.13

Delta Zero-
Crossing

µ 0.00 0.00 13

σ 0.19 0.33

Pitch µ 75 52 9

σ 27.3 21.7

Delta Pitch µ 0.28 0.05 7.5

σ 61.5 53.5

Table 1 Statistics of the Gaussian Mixtures for Three
Types of Features



5. DISCUSSION

Table 1 shows the means and standard deviations of a single
mixture model for the uni-dimensional features.  As expected
the means of the delta features and the normalised amplitude
are zero for both speech and music.  Discrimination in these
cases is provided by the variance of the distributions alone.
The ratio of the variances of the delta amplitude for speech
and music is particularly high accounting for the excellent
performance of this feature.  It appears that music in general
has very little amplitude variation between frames when
compared with the speech signal.  There is less difference  in
variances for the other parameters resulting in less
discriminating ability.

For the pitch, signal discrimination is mainly produced by the
difference between the means of the speech and music
distribution.  The pitch and the delta pitch are extracting two
different aspects of the signals, their difference in average
value and the expected rate of change.  This would explain the
larger improvement shown by the combination of these
features.

The zero-crossing rates of the signals are not a good
discriminator between speech and music.  The difference in
the statistics of the zero-crossing rate for the two signals is
small accounting for its poor performance.

Because of the higher dimensionality of the feature space and
the increased complexity of the model it is more difficult to
infer which of the cepstral information is providing the
discrimination between the signals.  However visual
examination of the spectrograms for speech and music
indicate that the music spectrum changes much more slowly
from frame to frame than the speech spectrum.  Hence the
very good performance from the delta features.  The cepstra
require more computation than the amplitude features or zero
crossings.  This disadvantage will often be nullified since the
cepstra will be required for other processing of the signal for

example speech or speaker recognition.

We are of the opinion that there is a degree of independence
between the different features we have reported in the paper.
Hence the features could be combined into a larger vector or
the scores from the different models can be fused to give
improved performance.  We intend to report on this in a future
paper.
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Figure 3 DET Plot for Pitch Features
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Figure 4 DET Plot for Zero-Crossing Features


