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ABSTRACT

This paper proposes a Markov random field (MRF) model-based
method for unsupervised segmentation of multispectral images con-
sisting of multiple textures. To model such textured images, a hi-
erarchical MRF is used with two layers, the first layer representing
an unobservable region image and the second layer representing
multiple textures which cover each region. This method uses the
Expectation and Maximization (EM) method for model parame-
ter estimation, where in order to overcome the well-noticed com-
putational problem in the expectation step, we approximate the
Baum function using mean-field-based decomposition of a poste-
riori probability. Given provisionally estimated parameters at each
iteration in the EM method, a provisional segmentation is carried
out using local a posteriori probability of each pixel’s region label,
which is derived by mean-field-based decomposition of a posteri-
ori probability of the whole region image.

1. INTRODUCTION

Segmentation of images consisting of multiple textures is the most
difficult problem among others since in textured images correla-
tions of gray level at each pixel with those of adjacent pixels should
be considered. For the textured image segmentation, hierarchi-
cal Markov random field (MRF) models [1],[3]-[4] are commonly
used with two layers. One layer called the hidden layer is an un-
observable stochastic process (region label process) which repre-
sents the geometry of regions covered with different textures. The
other layer consists of a number of observable stochastic processes
(observation process) which represent the covering textures. In
the hierarchical MRF models, all processes are described by MRF
models.

It is desirable that image segmentation can be carried out in
an unsupervised way; estimation of model parameters and image
segmentation can be done simultaneously by using only a given
image. For parameter estimation of the hierarchical MRF models
with an unobservable region process, the Expectation and Maxi-
mization (EM) method [5] is naturally used since the EM method
is exactly for Maximum Likelihood (ML) parameter estimation
with incompletely observed data. However the Baum function
in the expectation step, the summation over all possible config-
urations of the hidden region process is difficult (practically im-
possible) to be computed (See3.1). To overcome this problem, a
promising approach using the mean field theory has been proposed
to approximate the Baum function [2]. However in [2] any method
applicable to textured images is not given. Later an approach ap-
plicable to textured images has been proposed [3] but its derivation
seems to be rather ad hoc.

This paper presents a better refined approach to approximate
the Baum function, which is derived based on mean-field-based
decomposition1 of a posteriori probability of the hidden region
process. The a posteriori probability of the whole region image
is decomposed into the product of local a posteriori probabilities
(LAPs) for all pixels and the LAPs are computed consistently tak-
ing them as the mean fields. At each iteration in the EM method, a
provisional segmentation is carried out using the LAPs with provi-
sionally estimated parameters. In this paper we treat multispectral
images for general use.

2. MULTISPECTRAL TEXTURED IMAGE MODEL

A multispectral image comprising of different textures is consid-
ered as a realization of a collection of interacting random vari-
ables(XL;YL)2 defined on a finite two dimensional latticeL,
L = f(i; j)g, 1 � i � N1; 1 � j � N2. The observation pro-
cessYL = fYijg, (i; j) 2 L , whereYij is a vector representing
multispectral gray levels at(i; j)-pixel, is assumed to be a function
of the region label process,XL = fXijg, (i; j) 2 L. Xij is also
a vector as described soon. The interacting processes(XL;YL)
can be characterized completely by a joint probabilityp(xL;yL)
or equivalently byp(xL) andp(yL j xL), wherexL andyL rep-
resent a realization ofXL and that ofYL.

We consider images consisting ofM distinct textural regions.
Then suppose thatxij is an indicator vector taking one from the
vector setQX = fe1; : : : ; eMg, whereem; 1 � m � M is
theM dimensional unit vector whosemth component is 1 and all
other components are 0. When the region label of(i; j)-pixel is
m, xij takesem. To model the hidden region label process, we
adopt a multi-level logistic MRF (LMRF) with the second-order
neighborhood3 system. In this model all clique3 energies are as-
sumed to be zero except the doubleton clique energies which are
given by

U(xij ;xij+� ) =

�
�� if xij = xij+�
� otherwise.

(1)

In (1),� 2 N = f(0; 1); (0;�1); (1; 0); (�1; 0); (1; 1); (�1;�1);
(�1; 1); (1;�1)g. For example when� = (0; 1),xij+� = xi;j+1.

1 The idea of decomposition using the mean field approximation is ap-
plied to the Maximum A Posteriori (MAP) estimation for textured image
segmentation by us [6], [4].

2 In this paper,xA and f(xA) denote the setfxa1 ; : : : ; xalg and
the multivariable functionf(xa1 ; : : : ; xal) respectively, whereA =
fa1; : : : ; alg.

3 For details on MRFs and related concepts such as the neighborhoods
and cliques, see [7].



The local conditional probability for the hidden region label pro-
cess is given by

p(xij j x�X
ij
) =

expf�
P

�2N
U(xij ;xij+� )gP

xij2QX
expf�

P
�2N

U(xij ;xij+� )g
;

(2)
where�Xij denotes the(i; j)-pixel’s neighborhood onXL .

The observed multispectral textures are modeled by multidi-
mensional Gaussian MRFs (GMRFs) with the second-order neigh-
borhood systems characterized by the following local conditional
pdfs

p(yij j y�ij ;xij=em) =
1

(2�)K=2j�mj1=2
�

expf�
1

2
(yij � ŷ

m
ij )

T��1m (yij � ŷ
m
ij )g (3)

ŷ
m
ij = �m +

X
�2N

Bm;� (yij+� � �m): (4)

HereK denotes the dimension ofyij , i.e., the number of spectral
bands,̂ymij denotes the predicted vector using neighboring vectors
y�Y

ij
, and�m, �m, andBm;� stand for mean vector, covariance

matrix of the prediction error vectors(yij � ŷ
m
ij ) and spatial in-

teraction parameter matrix for pairwise cliques, all depending on
the class labelm. The spatial interaction parameter matrix is rem-
iniscence of the prediction coefficient matrix in the linear vector
prediction and therefore can be simply referred as the prediction
matrix. The prediction matrices are assumed to be symmetric, i.e.,
Bm;� = Bm;�� (if � = (i; j), then�� = (�i;�j)).

3. UNSUPERVISED SEGMENTATION ALGORITHM

3.1. Parameter Estimation

The EM method [5] is an iterative method to perform the ML es-
timation with incompletely observed data. It is considered that an
observed imageyL is imperfect data and a set of an observed im-
ageyL and a region label image (in fact a set of region indicator
vectors)xL is complete data. However only an observed image is
available. The EM method consists of the expectation step (E-step
to obtain the Baum function) and the maximization step (M-step).
� E-step:

Q(� j �(p)) =
X
xL2
X

p(xL j yL;�
(p)) log p(xL;yL;�) (5)

� M-step:

�(p+1) = argmax
�

Q(� j �(p)); (6)

where� represents a set of all parameters to be estimated (MRF
parameters of the region process and the observation process) and
�(p) is a provisionally estimated set at thep-th iteration.

The Baum function in (5) represents the sum over all possible
configurations ofxL, 
X = QN1�N2

X , and it is difficult (prac-
tically impossible) to calculate this. To overcome this problem,
mainly two approaches to approximate the Baum function have
been proposed. The first approach of approximation is to replace
the sum over all possible configurations ofxL by only its cur-
rent estimatex(p)L [4]. The second approach uses the mean field
approximation to calculate the Baum function[2]. We present a
better established algorithm for the latter approach applicable to

multispectral textured images based on the mean-field-based de-
composition of a posteriori probability.

The a posteriori probabilityp(xL j yL;�
(p)) in (5) is de-

scribed as

p(xL j yL;�
(p)) =

p(yL j xL;�
(p)
Y )p(xL;�

(p)
X )P

xL2
X
p(yL j xL;�

(p)
Y )p(xL;�

(p)
X )

;

(7)

where�X is a parameter set for the region process and�Y is that
for the observation process, and� = f�X ; �Y g. By using the
mean field approximation,p(yL j xL;�

(p)
Y ) andp(xL;�

(p)
X ) are

decomposed as [6], [4]

p(yL j xL;�
(p)
Y ) '

Y
(i;j)2L

p(yij j hyi�Y
ij
;xij ; �

(p)
Y ) (8)

p(xL;�
(p)
X ) '

Y
(i;j)2L

p(xij j hxi�X
ij
;�

(p)
X ); (9)

whereh�i is the mean field for�. Substituting (8) and (9) into
(7), and replacing

P
xL2
X

Q
(i;j)2L

by
Q

(i;j)2L

P
xij2QX

,

p(xL j yL;�
(p)) is also decomposed as

p(xL j yL;�
(p)) '

Y
(i;j)2L

p(xij j yij ; hyi�Y
ij
; hxi�X

ij
; �(p));

(10)

where

p(xij j yij ; hyi�Y
ij
; hxi�X

ij
;�(p)) =

p(yij j hyi�Y
ij
;xij ; �

(p)
Y )p(xij j hxi�X

ij
;�

(p)
X )P

xij2QX
p(yij j hyi�Y

ij
;xij ;�

(p)
Y )p(xij j hxi�X

ij
;�

(p)
X )

:

(11)

p(xij j yij ; hyi�Y
ij
; hxi�X

ij
;�(p)) is considered as a local a

posteriori probability (LAP) and hereafter we write it asz(p)ij (xij)
for short. Then the LAPs for all region indicators form a vector
(LAP vector),z(p)ij = (z

(p)
ij (xij = e1); � � � ; z

(p)
ij (xij = eM ))T .

It is reasonable to use the LAP vectorz(p)ij as the mean field ofxij ,

hxiij
4 . Then, from (11)z(p)ij (xij) is computed by

z
(p)
ij (xij) =

p(yij j y�Y
ij
;xij ;�

(p)
Y )p(xij j z

(p)

�X
ij

;�
(p)
X )

P
xij2QX

p(yijjy�Y
ij
;xij ;�

(p)
Y )p(xijjz

(p)

�X
ij

;�
(p)
X )

;

(12)

herey�Y
ij

is simply used forhyi�Y
ij

andz(p)
�X
ij

4
= fz(p)kl ; (k; l) 2

�Xij g. Note that in order to calculatez(p)ij , the LAP vector forxij ,

we needz(p)
�X
ij

, those forx�X
ij

. Therefore the LAP vectors are calcu-

lated by iterative procedures. Inp(xij j z
(p)

�X
ij

; �
(p)
X ) the doubleton

4 Given yL, the mean fieldhxiij can be defined ashxiij =P
xL2
X

xijp(xL j yL;�
(p)). Using the decomposition (10), it is

easily shown thathxiij = z
(p)
ij .



clique energy in (1) should be changed as

U(xij ; zij+� ) = ��xTijzij+� + �(1� xTijzij+� )

= �(1� 2xTijzij+� ): (13)

Now we can approximately calculate the Baum function with
the mean-field-based decomposition ofp(xL j yL;�

(p)),Q
(k;l)2L

z
(p)
kl (xkl), and with the same decomposition for

log p(xL;yL;�).

Q(� j �(p)) '
X
xL2
X

Y
(k;l)2L

z
(p)
kl (xkl)�

f
X

(i;j)2L

log p(yij j y�Y
ij
;xij ;�Y ) +

X
(i;j)2L

log p(xij j z
(p)

�X
ij

;�X)g

=
X

(i;j)2L

X
xij2QX

z
(p)
ij (xij) log p(yij j y�Y

ij
;xij ;�Y )

+
X

(i;j)2L

X
xij2QX

z
(p)
ij (xij) log p(xij j z

(p)

�X
ij

;�X) (14)

Once the Baum function is obtained, the M-step is carried out
straightforwardly ;�(p+1)Y and�(p+1)X are derived by maximization
of the first and second term of (14), respectively. An estimate of
�X , � in (13), cannot be given in a mathematically closed form,
therefore it needs to be calculated using an appropriate numerical
optimization method. In the following experiments we used the
Newton method to estimate�. Whereas, the GMRFs’ parameters
�Y can be estimated in a mathematically closed form as follows.
The reestimate of the mean vector,�

(p+1)
m is given as

�(p+1)m = f
X

(i;j)2L

z
(p)
ij (m)yijg=f

X
(i;j)2L

z
(p)
ij (m)g; (15)

wherez(p)ij (m) representsz(p)ij (xij = em). AssumingB(p+1)
m;�s =

B
(p+1)
m;��s

, the reestimates of the prediction matrices,B
(p+1)
m;�s can be

obtained by solving the following matrix equation

(B(p+1)
m;�1 ;B(p+1)

m;�2 ;B
(p+1)
m;�3 ;B

(p+1)
m;�4 )

0
B@
A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44

1
CA

= (A01;A02;A03;A04) (16)

Ast = f
X

(i;j)2L

z
(p)
ij (m)(yij+�s + yij��s � 2�(p+1)m ) �

(yij+�t + yij��t � 2�(p+1)m )T g=f
X

(i;j)2L

z
(p)
ij (m)g (17)

A0t = f
X

(i;j)2L

z
(p)
ij (m)(yij � �(p+1)m ) �

(yij+�t + yij��t � 2�(p+1)m )T g=f
X

(i;j)2L

z
(p)
ij (m)g; (18)

where�s,�t 2 N
0

= f(0; 1); (1; 0); (1; 1); (�1; 1)g, if s 6= t
then�s 6= �t. For example�1 = (0; 1), �2 = (1; 0), �3 = (1; 1),

�4 = (�1; 1). Finally the reestimate of the covariance matrix,
�
(p+1)
m is given as

�(p+1)
m =

P
(i;j)2L

z
(p)
ij (m)(yij � ŷ

m
ij )(yij � ŷ

m
ij )

T

P
(i;j)2L

z
(p)
ij (m)

(19)

ŷ
m
ij = �(p+1)m +

4X
s=1

B
(p+1)
m;�s (yij+�s + yij��s � 2�(p+1)m ):

(20)

3.2. Image Segmentation

Segmentation of an image into regions of different textures means
estimation of the hidden region processxL. In principle it is car-
ried out with the finally estimated parameters. However a provi-
sional segmentation is also possible with provisionally estimated
parameters at each iteration in the EM method. In the following
we describe the segmentation in this situation.

Given an observed imageyL and an estimated parameter set
�(p), provisional estimation ofxL is carried out by maximizing
the a posteriori probabilityp(xL j yL;�

(p)) (MAP estimation)5 .

x
(p)
L

4
= arg max

xL2
X
p(xL j yL;�

(p)) (21)

As seen from (10), (11) and (12), this global optimization problem
is approximately decomposed into the local optimization problems
using the LAPs forxijs,z(p)ij (xij)s.

x
(p)
ij = arg max

xij2QX

z
(p)
ij (xij) (22)

3.3. Initial Parameter Estimation

To start iterative procedures in the EM method, initial values of
MRF parameters should be given in advance. These initial values
are derived as follows. A given image is divided into small subim-
ages, for example, consisting of 8�8 pixels. Assuming a single
texture for each subimage, a set of texture parameters (compos-
ing a vector) is estimated. Assuming that the number of regions is
known, these vectors derived from all subimages are classified into
the known number of regions by using a clustering method. Then
the texture parameters for each different region are again estimated
using all subimages classified to the same region and are used as
initial texture parameters�(0)Y . An appropriate positive value can

be used as an initial region parameter�
(0)
X , �(0) in (13). In the

following experiments we use�(0) = 0:5.

4. SIMULATION RESULTS

To evaluate the performance of the proposed unsupervised seg-
mentation method, we applied the method to five textured images
shown in Fig. 1. Here (a) and (b) are gray images consisting of
three natural textures from the Brodatz album, (c) is a synthesized
color multi-textured image generated by the Gibbs sampler [7],
and (d) and (e) are color images consisting of five natural textures
from the MIT Vision Texture Database. For performance compari-
son three methods were applied: the proposed method 1 described

5 To solve this optimization problem, the stochastic relaxation algorithm
known as the Simulated Annealing (SA) [7] can be used. However we do
not prefer using the SA since it demands formidable computation.



(a) gray(3 regions) (b) gray(3 regions) (c) color(4 regions) (d) color(5 regions) (e) color(5 regions)

Figure 1: Textured images used for segmentation experiments.

Table 1 Segmentation errors(%) by three methods

image proposed 1 proposed 2 conventional
(a) 1.8 1.7 4.0
(b) 2.5 2.7 10.5
(c) 2.0 4.3 8.1
(d) 1.1 1.6 6.5
(e) 2.0 1.3 12.3

in 3, the method 2 with the first type of approximation of the Baum
function where the sum in (5) is replaced by only the current es-
timatex(p)L derived by (22), and a conventional method[4] where
the same approximation of the Baum function as in the method 2
is made but with the current estimate derived by the Generalized
ICM (GICM) method [6],[4]. The GICM method, which is a gen-
eralization of the ICM method [8], is described as

x
(p)
ij =arg max

xij2QX

fp(yijjxij ;y�Y
ij
;�

(p)
Y )p(xijjx

(p�1)

�X
ij

;�
(p)
X )g:

In the proposed method 2 and the conventional method, the param-
eter estimation is reduced to maximization of the pseudo-likelihood
[8] given the current estimate of the region process.

Segmentation results for Fig. 1(a) as an example are shown in
Fig. 2 and segmentation errors for five images are summarized in
Table 1. The results by the proposed method 1 and 2 suggest that
it does not affect very harmfully to replace the sum in the Baum
function by only the current estimatex(p)L derived by (22), and
comparing the results by the proposed method 2 with those by the
conventional method, the MAP estimation by (22) is essential to
obtain a good segmentation.

5. CONCLUSION

We have proposed an improved method for unsupervised segmen-
tation of multispectral images consisting of multiple textures. The
proposed method is an iterative method based on the EM method
where a decomposed a posteriori probability is used. Using the
mean field approximation, a posteriori probability of the whole re-
gion image is decomposed into the product of local a posteriori
probabilities (LAPs) for all pixels. Experiments show that the use
of LAPs is essential to perform a good image segmentation.
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