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ABSTRACT This paper presents a better refined approach to approximate

) i the Baum function, which is derived based on mean-field-based
This paper proposes a Markov random field (MRF) model-based ye0mpositioh of a posteriori probability of the hidden region

method for unsupervised segmentation of multispectral images Consocess. The a posteriori probability of the whole region image
S|st|ng_of multlpl_e texture§. To model such t_extured Images, a_h" is decomposed into the product of local a posteriori probabilities
erarchical MRF is usgd vv_|th two layers, the first layer representing LAPs) for all pixels and the LAPs are computed consistently tak-
an unobservable region image and the second layer representing, ; them as the mean fields. At each iteration in the EM method, a
multiple textures which cover each region. This method uses the 6 isional segmentation is carried out using the LAPS with provi-

Expectation and hMaX|'m|za(;|on (EM) methodhfor rT|1|odeI_ pa(;ame- sionally estimated parameters. In this paper we treat multispectral
ter estimation, where in order to overcome the well-noticed com- j20.0 for general use.

putational problem in the expectation step, we approximate the

Baum function using mean-field-based decomposition of a poste-

riori probability. Given provisionally estimated parameters ateach 2. MULTISPECTRAL TEXTURED IMAGE MODEL

iteration in the EM method, a provisional segmentation is carried ) ) o ) ) )
out using local a posteriori probability of each pixel’s region label, A Multispectral image comprising of different textures is consid-

which is derived by mean-field-based decomposition of a posteri- €réd as a realization of a collection of interacting random vari-
ori probability of the whole region image. ables(X,,Y)* defined on a finite two dimensional lattic

L£L=A{\7)}1<i< Ni,1<j < N, The observation pro-
cessY. = {Y;;}, (4,5) € L, whereY;; is avector representing
1. INTRODUCTION multispectral gray levels t, j)-pixel, is assumed to be a function
_ _ L ) _ of the region label procesX ; = {Xi;}, (¢,5) € £. X;; is also
Segmentation of images consisting of multiple textures is the most 5 yector as described soon. The interacting proceSSes Y )
difficult problem among others since in textured images correla- can pe characterized completely by a joint probabiitx 2,y )
tions of gray level at each pixel with those of adjacent pixels should o equivalently byp(x ) andp(y, | xc), wherex, andy , rep-
be considered. For the textured image segmentation, hierarchiggent a realization 3+ and that ofy ..
cal Markov random field (MRF) models [1],[3]-[4] are commonly We consider images consisting &f distinct textural regions.
used with two layers. One layer called the hidden layer is an un- then suppose that;; is an indicator vector taking one from the
observable stochastic process (region label process) which repreyecior setQy = {e1,...,em}, wheree,,,1 < m < M is
sents the geometry of regions covered with different textures. The e 37 dimensional unit vector whoseth component is 1 and all
other layer consists of a number of observable stochastic processegiher components are 0. When the region labeliof )-pixel is
(observation process) which represent the covering textures. In,, x;; takese,,. To model the hidden region label process, we
the hierarchical MRF models, all processes are described by MRFaqopt a multi-level logistic MRF (LMRF) with the second-order

models. neighborhoodl system. In this model all cligdeenergies are as-

It is desirable that image segmentation can be carried out in symed to be zero except the doubleton clique energies which are
an unsupervised way; estimation of model parameters and imaggyiven by
segmentation can be done simultaneously by using only a given
image. For parameter estimation of the hierarchical MRF models —B ifxi; = Xij4r
with an unobservable region process, the Expectation and Maxi- U(xij, Xij+7) = { 3 othe]rwise.] @
mization (EM) method [5] is naturally used since the EM method
is exactly for Maximum Likelihood (ML) parameter estimation In(1),r € N = {(0,1), (0,—1),(1,0), (—1,0), (1, 1), (=1, —1),
with incompletely observed data. However the Baum function (=1,1), (1,—1)}. Forexample when = (0,1), X;j - = Xi j 1.
in the expectation step, the summation over all possible config-____" """’ T 7
urations of the hidden region process is difficult (practically im- ! The idea of decomposition using the mean field approximation is ap-
possible) to be computed (S8¢el). To overcome this problem, a plied to the_z Maximum A Posteriori (MAP) estimation for textured image
promising approach using the mean field theory has been propose&egr:;]e?rt‘?st'or;bgr“; [egrﬁ]'f(;p ) denote the se(x 2.} and
to approximate the Baum function [2]. However in [2] any method the muItivarFi)at?Ie'fuﬁctionf(maA . Ta)) respecti\(;(lal’y.\./\;hgrleA _
applicable to textured images is not given. Later an approach ap-ro | 4,}. T '

plicable to textured images has been proposed [3] but its derivation 3 For details on MRFs and related concepts such as the neighborhoods
seems to be rather ad hoc. and cliques, see [7].




The local conditional probability for the hidden region label pro- multispectral textured images based on the mean-field-based de-

cess is given by composition of a posteriori probability.
The a posteriori probability(x. | y; A®)) in (5) is de-
exp{—>_, cn UXijs Xij4-)} scribed as
Pl | ﬁ) B Zx"€Qx exp{— Zre/\/ U(Xijaxij-&-r)}7 (») )
’ @ plxe |y = o PYelxed e d)
wheren¥ denotes théi, j)-pixel's neighborhood oX . . Doxpcox P %25 A)p(xe; AY)
The observed multispectral textures are modeled by multidi- @)

mensional Gaussian MRFs (GMRFs) with the second-order neigh-
borhood systems characterized by the following local conditional where) x is a parameter set for the region process ands that

pdfs for the observation process, and= {Ax,Ay}. By using the
1 mean field approximatiorn(y . | x¢; /\g’?)) andp(xc; )\gﬁ’)) are
p(yi; | Yoo Xij =en) = WW decomposed as [6], [4]
epl—5 (v, ~ Y S5 vy ~ I @) pe | xeA) = ] ey | 0 % i) @)
(i,5)€EL
Vii = Mt ) B (yiir — ) (4)
7 zj; ’ PO AY) = T plcis | ),x08), )
(ig)EL

Here K denotes the dimension ¢f ;, i.e., the number of spectral _ ) o _
bandsy denotes the predicted vector using neighboring vectors Where (e) is the mean field fos. Substituting (8) and (9) into
Yu¥, andu,, .., andB,, , stand for mean vector, covariance (7), and replacmgzx €Qx H(z])eg by H(”)eﬁ in]-eQx'

matrix of the prediction error vectofy,;; — y77) and spatial in- p(xc | y; AP)) is also decomposed as
teraction parameter matrix for pairwise cliques, all depending on
_th_e class labein. The _spatlal |nter_a_ct|on parz_imeter mfatrlx isrem-  p(xz | y.; )\(P) H p(xi; | y”, > , :<X>7,,X. ; /\(p>),
iniscence of the prediction coefficient matrix in the linear vector G.ec Y
prediction and therefore can be simply referred as the prediction (10)
matrix. The prediction matrices are assumed to be symmetric, i.e.,
B.,.,r = Bo,— (if 7 = (4, ), then—7 = (—i, —7)). where

3. UNSUPERVISED SEGMENTATION ALGORITHM P(xij | ¥ij5 (YD (X5 APy =

(@) i, (@)

3.1. Parameter Estimation p(yij | <Y>nl§’j:xija)‘yz'7 )p(xij | (X>ng§:>\§ )
The EM method [5] is an iterative method to perform the ML es- >oxi eax PV | ¥y, %3 A )p(xi; | (%), x5 A
timation with incompletely observed data. It is considered that an (11)

observed imagg . is imperfect data and a set of an observed im-
agey , and a region label image (in fact a set of region indicator
vectors)x . is complete data. However only an observed image is
available. The EM method consists of the expectation step (E-stepPosteriori probability (LAP) and hereafter we write it &g’ (xi;)

to obtain the Baum funct|on) and the maximization Step (M step) for short. Then the LAPs for all reglon indicators form a vector

o E-step: (LAP vector),z? = (2 (xi; = e1),-, 22 (xi; = em))".

Itis reasonable to use the LAP vecaﬁf) as the mean field of;;,
QAP = 3" p(xc | yesA7) logp(xz,y.;A)  (5) (x)i;* . Then, from (1%’ (x;;) is computed by

XreEQx

p(xij | ¥ijs (y)ny,<x>ng§;)\(p)) is considered as a local a
H i

 -step: NIELCILL NIl | 25 08)
Z;: \Xij
AP+ argm)z\a,XQ()\ | )\(p))7 (6) J Zx can? (y”|yny Xz],/\(m) (x”|z(17) /\(P))
where\ represents a set of all parameters to be estimated (MRF (12)
parameters of the region process and the observation process) and N
AP isa provisionally estimated set at theh iteration. _herey, v is simply used fory),» and z(p) = 2P (k1) €
The Baum function in (5) represents the sum over all possible ’ ) » "is
configurations ofxz, Qx = QY¥**™2, and it is difficult (prac- n;; }- Note that in order to calcularz;‘ the LAP vector forx;;,
tically impossible) to calculate this. To overcome this problem, we neeck“}g , those forx, x- Therefore the LAP vectors are calcu-
mainly two approaches to approximate the Baum function have i

been proposed. The first approach of approximation is to replacelated by iterative procedures ixij | Z(Qv A{’) the doubleton
the sum over all possible configurations xf by only its cur-

rent estimatecg’>[4]. The second approach uses the mean field
approximation to calculate the Baum function[2]. We present a
better established algorithm for the latter approach applicable toeasily shown thatx);; = zg?).

4 Given y,, the mean field(x);; can be defined agx);; =
Xoefx x;;p(xz | y2;A(P)). Using the decomposition (10), it is



clique energy in (1) should be changed as 72+ = (—1,1). Finally the reestimate of the covariance matrix,
(p+1)
X

- - is given as
U(xij, Zij+r) = —B%ijZij+r + B(1 — Xi52ij+47) ) ;
p &m am
= B(1- 2X3;‘Zi]‘+7-). (13) nE+) Z(i,j)éﬁ 235 (m)(yij - Yij)(yij - yij) (19)
. . . " Z(ij)€ll Zi(;))(m)

Now we can approximately calculate the Baum function with

the mean-field-based decomposition @),
i omp pixc |y A7) §T = a4 ZBS?J?? Visr + Vigr — 268D,
H(k,weﬁ z (xk1), and with the same decomposition for
logp(xc,y.;A). (20)
( ) ( ) .
QIATAY Z H 2y (Xk1) 3.2. Image Segmentation

X eQx (k,EL . . . . .
Segmentation of an image into regions of different textures means

{Zlogp (i | ¥y %135 Av) +Zlogp (xij | Z AX)} estimation of the hidden region process. In principle it is car-
(,J)€eL (i4)eL ried out with the finally estimated parameters. However a provi-
_ (,,) sional segmentation is also possible with provisionally estimated
= Z Z (xi;) log p(yi; | ¥y, Xij3 Av) parameters at each iteration in the EM method. In the following
(LI)ELXjE€RQx we describe the segmentation in this situation.
+ Z Z (p) (x:;) log p(xij | anJ\X) (14) Given an observed image, and an estimated parameter set

A® | provisional estimation ok, is carried out by maximizing

7 LX; .. - . .
(1.0)EL X EQx the a posteriori probability(x | y -; A®) (MAP estimationj .

Once the Baum function is obtained, the M-step is carried out
straightforwardly A\? ") andA™") are derived by maximization
of the first and second term of (14), respectively. An estimate of
Ax, B in (13), cannot be given in a mathematically closed form, As seen from (10), (11) and (12), this global optimization problem
therefore it needs to be calculated using an appropriate numericaiS approximately decomposed into the local optimization problems
optimization method. In the following experiments we used the using the LAPs fomjs,zi(j-’) (xij)s.
Newton method to estimae Whereas, the GMRFs’ parameters

A
x) = arg o p(xe |yes A7) (21)

Ay can be estimated in a mathematically closed form as follows. xg?) = arg max z( >(Xi]‘) (22)
The reestimate of the mean vectofZ " is given as Xij€Qx
(p+1) ={ Z (p) yw}/{ Z (p) 1 (15) 3.3. Initial Parameter Estimation
(i,j)eL (i,5)EL To start iterative procedures in the EM method, initial values of
MRF parameters should be given in advance. These initial values
Wherez(’.’)( ) represents(m(xij = e,,). AssumingBZ+! = are derived as follows. A given image is divided into small subim-

ages, for example, consisting 0k8 pixels. Assuming a single
texture for each subimage, a set of texture parameters (compos-
ing a vector) is estimated. Assuming that the number of regions is
known, these vectors derived from all subimages are classified into
Aun A A Au the known number of regions by using a clustering method. Then
(Bfffti), ngt;), B(”tl), B(”“)) Axi Axm Ay An the texture parameters for each different region are again estimated
: Asi Az Asz Asg using all subimages classified to the same region and are used as

Aa An A Au initial texture parametera{”’. An appropriate positive value can

B | the reestimates of the prediction matricBéi’,Ts can be

m,—Tg'

obtained by solving the following matrix equation

= (Aor, Aoz, Aos, Aod) (16) be used as an initial region paramef’, 3 in (13). In the
following experiments we usé(® = 0.5.
— (p) (p+1)
A = {3 APy, + i, =208 4. SIMULATION RESULTS
(i,j)eL
(p+1) (p) To evaluate the performance of the proposed unsupervised seg-
4y 17 . . . .
Wijore + Yijmr VA Zﬁ m} @n mentation method, we applied the method to five textured images
(hi)€ shown in Fig. 1. Here (a) and (b) are gray images consisting of
A = { Z (”> )y — pﬁ,’j“)) three natural textures from the Brodatz album, (c) is a synthesized
(e color multi-textured image generated by the Gibbs sampler [7],

( +1) ( ) and (d) and (e) are color images consisting of five natural textures
Yijpre TYijor — rom the ision Texture Database. For performance compari-
( + PPN 2P (m)}, (18)  from the MIT Vision T Database. For perf pari
(i.J)€EL son three methods were applied: the proposed method 1 described

, ) 5 To solve this optimization problem, the stochastic relaxation algorithm
wherer,,: € N' = {(0,1),(1,0),(1,1), (-1 )}, if s #t known as the Simulated Annealing (SA) [7] can be used. However we do
thenr, # . For exampler, = (0,1), » = (1, 0) =(1,1), not prefer using the SA since it demands formidable computation.
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Figure 1: Textured images used for segmentation experiments.

(c) color4 regions) (d) color(5 regions) (e) color(5 regions)

Table 1 Segmentation errors(%) by three methods

image || proposed 1| proposed 2| conventional
@) 1.8 1.7 40

(b) 25 2.7 105

(c) 2.0 4.3 8.1

(d) 11 1.6 6.5

(e) 2.0 1.3 123

(b) error=1.8%

in 3, the method 2 with the first type of approximation of the Baum
function where the sum in (5) is replaced by only the current es-
timatex(L”) derived by (22), and a conventional method[4] where
the same approximation of the Baum function as in the method 2
is made but with the current estimate derived by the Generalized
ICM (GICM) method [6],[4]. The GICM method, which is a gen-
eralization of the ICM method [8], is described as

i

(d) error=4.0%

Figure 2: Segmentation results applied to Fig. 1(a): (a) true re-
In the proposed method 2 and the conventional method, the paramgion image, (b) segmented image by proposed method 1, (c) by
eter estimation is reduced to maximization of the pseudo-likelihood Proposed method 2, and (d) by conventional method.
[8] given the current estimate of the region process.

Segmentation results for Fig. 1(a) as an example are shown in ] )
Fig. 2 and segmentation errors for five images are summarized in [2] J. Zhang : "The mean field theory in EM procedures for
Table 1. The results by the proposed method 1 and 2 suggest that ~ Markov random fields”, IEEE Trans. Signal Process., 40, 10,

-1 c) error=1.7%
x5 AP} (© °

(p)_. . 2 (P)
X5 —argxmggx{p(yijlngyynivj,>\y )n( x
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