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ABSTRACT

Consider the problem where pulse trains transmitted from a known
number of sources are received on a single communications chan-
nel. These pulses are corrupted with noise. The deinterleaving
problem is to determine which source contributed which pulse and
the periods and phases of each source. This paper explores the
performance of a number of deinterleaving algorithms. We pro-
pose an alternative to the existing forward dynamic programming
(FDP) technique: simulated annealing (SA). It can use either the
same cost function as for FDP, or anL1 or L2 norm output error
cost function. We also investigate modelling the noise by heavy-
tailed distributions, in addition to white Gaussian noise (WGN).

1. INTRODUCTION

When pulse trains from a number of different sources are received
on a single communications channel, the problem is then to iden-
tify which source contributed each pulse. This is known as dein-
terleaving. Here we consider the case where the sources arepe-
riodic and their number isknown. Furthermore, it is assumed
that the pulses have been corrupted by additive white Gaussian
noise (WGN). By deinterleaving the received signal, the periods
and phases of each source can then be estimated. Applications
lie in radar detection and potentially in computer communications
and neural systems (see [1], [2] and the references therein).

Proposed approaches to the deinterleaving problem include
histogramming [1] and folding. However, they work best when
the jitter noise is small and requirea priori information regarding
periods and phases in order to choose suitable initial conditions.

Note that this problem cannot be solved by first using contin-
uous optimisation techniques and then checking all integer neigh-
bours of the real-valued solution. This is because the cost function
one obtains is not differentiable (it involves the functionmin); nor
can it be expressed in a closed form.

In [2], the pulse-train deinterleaving problem is formulated as
a stochastic discrete-time dynamic linear model (DLM). This is
a time-varying linear system using state-space form, in which the
state and observation matrices at each time instant belong to a finite
set of possible values.

When there are multiple sources, the optimal solution is to
select from all source sequences, called paths, the one with the
minimum prediction-error cost. The problem isNP-hard, i.e. in-
volving exponential complexity, so one must resort to some sub-
optimal scheme. In [2], two such schemes are investigated: for-
ward dynamic programming (FDP) with fixed look-ahead, and
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probabilistic teacher (PT). We investigate a third scheme: simu-
lated annealing (SA), using both the DLM formulation and an al-
ternative output error formulation. Simulated annealing is a useful
method for tackling combinatorial optimisation problems. When
minimising a function, it is able to climb out of a local minimum
with some probability, in the hope of finding the global minimum.

The FDP algorithm does a full tree-search over a fixed look-
ahead interval�. The prediction error cost of all of these se-
quences (each of length� + 1) is computed. In this way im-
probable paths are eliminated and FDP updates the most probable
sequences and costs terminating at each source.

The main contributions of this paper are as follows:

� comparison of performance of different deinterleaving al-
gorithms;

� comparison of different cost criteria;

� investigation of different noise distributions.

We find that SA is superior to FDP in a number of conditions.

2. PROBLEM FORMULATION

2.1. Signal Model

ConsiderN sources, each generating periodic pulse trains. De-
fine T i; �i; i = 1; : : : ; N; to be the period and phase of the
ith source, respectively. Also, lettk; k = 1; 2; : : : be the time
of arrival (TOA) of thekth pulse at the receiver in the absence of
measurement noise. Letsk = i mean that sourcei is active at
pulse instantk. Let ei; i = 1; : : : ; N; be the unit column vector
in RN with 1 in theith position. LetXk 2 fe1; : : : ; eNg be the
state of the process, i.e.

Xk = ei; if sk = i: (1)

Consider an observation sequenceYk = (y1; : : : ; yk). Here,
yk is theobservedTOA of thekth pulse at the receiver. Thus,

yk = tk +Wk; where Wk � N [0; �2w]: (2)

In other words, the jitter noise is modelled as zero-mean WGN
with known variance�2w. It is assumed that the pulses summed at
the receiver give no amplitude or width information which might
help identify their sources. Although systems can use parameters
such as direction of arrival (DOA) and carrier frequency to assist in
the deinterleaving, we assume no knowledge of this information.



2.2. Formulation as Dynamic Linear Model

By formulating the deinterleaving problem as a DLM, we can per-
form estimation using a Kalman filter (KF).

Let � ik; i = 1; 2; : : : denote the last time sourcei was active
up to and including the arrival of thekth pulse.� ik is initialized to
�i until sourcei first becomes active. Then

�
i
k =

�
� ik + T i; if (k + 1)th pulse is due to sourcei
� ik; otherwise

�
i
1 = �

i
: (3)

Define theRN vectors

�
0
k = (�1k ; : : : ; �

N
k ); T

0 = (T 1
; : : : ; T

N );

�
0 = (�1; : : : ; �N ): (4)

Now define the state vectorxk to be

xk =

�
T

�k

�
; x1 =

�
T

�

�
: (5)

Finally, xk can be written in state-space form as the following
DLM

xk+1 = F (Xk+1)xk +G(Xk)vk; vk � N [0; Q]

yk = H
0(Xk)xk +Wk; Wk � N [0; R]: (6)

Herevk is independent WGN with varianceQ = �2v, R = �2w,
and

F (Xk+1) =

�
IN 0N�N

diag(Xk+1) IN

�
;

H
0(Xk) =

�
01�N X 0

k

�
; G(Xk) = 02N�1: (7)

Here,0M�N represents the zero matrix with dimensionsM �N

andIN is the identity matrix of dimensionsN �N .

2.3. Kalman Filter Estimator & Prediction Error Cost

Given a source sequence, Kalman filtering enables one to obtain
an estimate ofxk. The source sequence�� = Sp� is denoted as
pathp. Let F p

k , Gp
k andHp

k be the associated DLM matrices in
(6). For given noise-corrupted observationsY�, let

x
p
k+1jk = Efxk+1jYk; Spkg

�p
k+1jk

= Ef(xk+1 � xk+1jk)(xk+1 � xk+1jk)
0jSpkg (8)

be the predicted state estimate and the predicted state-covariance
estimate at timek + 1, given the pathp.

Defineek+1 to be the one-step prediction error at timek + 1
given the pathp. The KF for the DLM (6), given the pathp and
observationsY�, is described by the standard KF equations [2],
initialized witha priori estimatesxp

1j0
and�p

1j0
.

The KF one-step prediction error cost of the pathp, denoted
asJp� , is then given byJp� =

P�

k=1
(epk)

2.
The optimal scheme is to calculate the one-step prediction

error costs of allN� possible paths, given the observation se-
quenceY�. Then the optimal (MAP) pathp� is given byp� =
argminp J

p
� ; whereJp� is defined above. The KF on the optimal

pathp� gives filtered estimates of the state and therefore periods.

2.4. Reformulation of Search Space

Reduction in the size of the search space occurs through:

� Formulation in terms of periods and phase differences, i.e.
tuples(T 1; : : : ; TN ; d1; : : : ; dN�1), wheredi = �1��i+1,
i 2 [1; N � 1], since each source sends pulses periodi-
cally. Note that the source sequence depends on phase dif-
ferences, not the actual phases themselves.

� Ordering periods, i.e.T 1 � T 2 � � � � � TN ;

� Eliminating tuples whose greatest common divisor is not
one (as the order of source assignments is unaffected if ev-
ery element in the tuple is multiplied by a constant).

2.5. Output Error Formulation

An alternative, far simpler formulation is possible. Since each
source sends pulses periodically, represent the (estimated) phase
and period of each source in a2N -tuple or vector. (This corre-
sponds tox1 in the DLM formulation.) For a given tuple, one can
generate the corresponding sequence of TOAs,(t̂1; : : : ; t̂�).

Now, define the least-squares (L2 norm) cost function as:

�X
k=1

(yk � t̂k)
2
; (9)

where(t̂1; : : : ; t̂�) is the sequence of observations corresponding
to the current state. The task is then to find the tuple which gives
the minimum cost. Labelling of the sources is arbitrary, so let
T 1 � T 2 � � � � � TN .

If the model of non-Gaussian noise is more appropriate than
WGN, then theL1 norm is also worth investigating.

3. SIMULATED ANNEALING

Simulated annealing is a probabilistic global optimisation tech-
nique. It is based on the physical annealing of solids, in which
sufficiently slow cooling gives rise to a regular atomic structure
with low energy.

When the algorithm moves to a configuration or ‘state’ which
has a lower cost, it accepts it as the new state. However, un-
like non-hill-climbing algorithms, if the cost of the new state is
worse, it is not immediately rejected (which would result in getting
trapped in a local minimum). Instead, it accepts the new state with
probabilitye��E=T , where�E = (High cost� Low cost).

This depends on the ‘temperature’T , which is reduced ac-
cording to a ‘schedule’. Thus for the high starting temperatures,
most new configurations are accepted, whereas for low tempera-
tures good elements of configurations have been ‘frozen’ in. Since
the moves and acceptance/rejection decisions are made probabilis-
tically, SA is a stochastic method, which will not necessarily find
the same configuration each time.

3.1. Move function for Prediction Error SA

The move functions chosen for the output error and DLM formu-
lations are essentially the same, except that the former deals with
phases and the latter with phase differences. Two types of move
are used: a ‘large’ move for minimising the space diameter, and a
‘small’ move to achieve a smoother move landscape.

For the output error formulation, a new small move is chosen
by taking one of the�i’s at random, and choosing a new value,



�new, which satisfies the following restrictions:�i�w � �new �
�i+w and�min � �new � �max, wherew is some window size
and�max (�min) is an upper (lower) bound for the phases.

For the DLM formulation, phase differencesdi are changed in
the same way as�i above.

The large move operates by changing a number of periods,
chosen at random, again adjusting their value within some window
size, but also maintaining the conditionT 1 � T 2 � : : : � TN .

3.2. Cooling Schedule

In [3], it is shown that SA is guaranteed to converge to theglobal
minimum if T (i) ! 0 no faster thanO( 1

log i
), whereT (i) is the

ith temperature of the cooling schedule. In practice the annealing
algorithm provides us with only a sub-optimal solution.

The cooling schedule is defined by the following parameters:
the initial temperatureT (0); the stop criterion, determining the
final temperature; the number of moves per temperature; some
decrement rule for obtainingT (i+ 1) from T (i).

The initial temperature is chosen so that the ratio ofcost-incr-
easingmoves accepted to total moves proposed is above some
threshold. This means that initially the algorithm can move freely
over the whole search space.

We use a fixed number of temperatures, chosen so that the last
few temperatures are low. Also fixed is the number of moves at
each temperature. The exponential decrement rule (first proposed
in [4, 5]), is used, i.e.T (i+ 1) = �T (i); for � 2 [0:86; 0:92].

3.3. Additions to Output Error SA Algorithm

When using the output error formulation, two additions to the basic
SA algorithm were made: a local or restricted search at the end of
the annealing, and a conditional reheat.

3.3.1. Restricted Search and Reheat

At the end of the schedule, the algorithm does a local search in the
neighbourhood of the best configuration found (using the SA algo-
rithm again), i.e. if the best tuple found is(T̂ 1; : : : ; T̂N ; �̂1; : : : ; �̂N)

then the search is restricted to periods in the range(T̂ 1�wl; : : : ; T̂N
� wl) for somewl. However the phases are free to take any value
within the original phase range. In this way, when configurations
close to the correct one are found by the main run, there is a good
chance of the local search then finding the correct one.

A reheat condition (e.g. [6]) is employed to deal with those
cases when the SA originally fails to find a low score and hence a
good configuration. The correct periods and phases result int̂k =
tk. By (2) and (9), the average cost of the correct configuration
(i.e. the global minimum for� sufficiently large) for WGN is:

Ctrue =

�X
k=1

1p
2��w

Z 1

�1

w
2
ke
�w2

k
=2�2

wdwk

= ��
2
w: (10)

When the best cost found is above some threshold, say2Ctrue,
the reheat is activated. As a precaution, the total number of reheats
allowed is prespecified to ensure termination of the algorithm.

The expected values of the ‘true’ cost for Gaussian noise, us-
ing theL1 andL2 norm cost functions are

p
2
�
��w and��2w re-

spectively. For Rayleigh noise (with parameter�), theL1 andL2
norms give average ‘true’ costs of

p
�
2
�� and2�2� respectively.

3.4. Comparison of SA Cost Functions and FDP

TheL2 andL1 norm cost functions have the advantage of robust-
ness, i.e. they do not break down when thea priori estimates of
periods and phases (xp

1j0
in the DLM formulation) are far from

their true values. For� sufficiently large, the correct tuple always
has the lowest cost, unlike the prediction error cost function. The
norms have no parameters that must be determined, whereas a suit-
able value of�p

1j0
must be determined in the prediction error case.

For SA, the prediction error cost function results in a compu-
tational cost of(8N2+8N +4)M� = O(N2)M� floating point
operations (FLOPs), whereN is the number of sources,M is the
number of moves and� is the number of pulse instants in the se-
quence. This is due to the structure ofF

p
k+1 andHp

k , which means
that the KF requires onlyO(N2) FLOPs, instead ofO(N3).

A run of the FDP algorithm with a lookahead of� requires
thatN�+1 sequences of length� be examined for each pulse in-
stant. Thus,�(8N2 + 8N + 4)N�+1� = �O(N�+3)� FLOPs
are required, where� in this case is the number of pulse instants
required for convergence.

In contrast, theL1 andL2 norm cost functionsper seare not
the computational bottleneck of the output error SA algorithm, un-
like in the case of the prediction error cost function. Instead, the
most computation time is spent constructing the new configura-
tions every time a move is made. The number of FLOPs for a
simulation is(N�+ 3�� 1)M , i.e. linear inN and�.

4. SIMULATION STUDIES

4.1. Estimation of Multiple Sources with WGN

SA is computationally more efficient than FDP in the following
scenarios:(i) high corrupting noise (e.g. Fig. 1);(ii) a large number
of sources (e.g. Fig. 2 and Table 1).

Consider the example of an interleaved pulse train with pa-
rametersN = 2, T 0 = (80; 11); �0 = (4; 3). The initial estimates
for periods and phases werex01j0 = (96; 60; 1; 2). 1 Fig. 1 shows
that the prediction error andL2 norm SA are computationally less
expensive than FDP for�2w � 56. Whereas FDP fails to correctly
estimate the periods for�2w � 90, prediction error SA copes for
�2w up to 100.L2 norm SA appears to be able to cope with any
physically realistic variance. e.g. for�2w = 225 (not shown on
graph), correct estimation requires6:73 � 107 FLOPs.

Fig. 2 refers to the exampleN = 3, T 0 = (11; 30; 80), � =
(3; 4; 6), with x01j0 = (39; 40; 90; 3; 4; 2). TheL2 norm SA is
more economical computationally than FDP for�2w � 16.

Table 1 compares FDP and theL2 norm SA for the interleaved
pulse train with parametersN = 4, T 0 = (11; 30; 56; 80), �0 =
(3; 4; 1; 6), anda priori estimatex01j0 = (20; 40; 46; 90; 3; 4; 3; 2).
In this case, SA is superior to FDP for noise with variance only
�2w = 4.

4.2. Non-Gaussian Noise
The Rayleigh and Cauchy distributions are heavy-tailed, i.e. they
satisfyP [U � u] � u��h(u), asu ! 1, in which0 < � < 2
andh is slowly varying at infinity. SA is computationally more
efficient than FDP for heavy-tailed noise.

Fig. 3 compares the performance of FDP and SA for the ex-
ampleN = 2, T 0 = (80; 11), �0 = (4; 3), with varying levels of

1Since SA is a probabilistic algorithm, for each simulation numerous
runs of SA were carried out to obtain its average performance.
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Figure 1: Comparison of FLOPS required to obtain the correct
periods for SA and FDP. The example used isT 0 = (80; 11); �0 =
(4; 3), x01j0 = (96; 60; 1; 2) with Gaussian noise.
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Figure 2: Comparison of FLOPS required to obtain the cor-
rect periods for SA and FDP. The example used isT 0 =
(11; 30; 80); �0 = (3; 4; 6), x01j0 = (39; 40; 90; 3; 4; 2) with
Gaussian noise.

Rayleigh-distributed noise and initial estimatex01j0 = (96; 60; 1; 2).
Since the noise is heavy-tailed, theL1 norm cost function was used
as well as theL2 norm cost function. SA performs far better than
FDP, even when the noise is low, despite there being only two
sources. TheL1 andL2 norm cost functions perform comparably.

Similar results are also obtained when Cauchy-distributed noise
is used. Refer to the full paper [7] for examples of: Cauchy noise,
larger numbers of sources and bada priori estimates.

5. CONCLUSIONS

This paper shows that simulated annealing using theL2 norm (least-
squares) cost function outperforms forward dynamic programming
in all of the following cases:(i) high variance of the corrupting
noise;(ii) bada priori estimates of the periods and phases,x1j0;
(iii) heavy-tailed noise;(iv) a large number of sources,N . In addi-
tion, theL2 norm cost function avoids the need to choose a suitable
value for�1j0. Thisa priori estimate causes problems for FDP, as

Table 1: Comparison of FDP and SA for the 4-source
case of T 0 = (11; 30; 56; 80); �0 = (3; 4; 1; 6); x01j0 =

(20; 40; 46; 90; 3; 4; 3; 2) with Gaussian noise.�1j0 = 100.

FDP SA (L2 norm)
�2 � � FLOPs � FLOPs

1 2 200 4:198 � 106 100 4:386 � 109

2.5 4 700 4:702 � 108 100 1:168 � 1010

4 11 150 4:540 � 1012 150 5:083 � 1010
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Figure 3: Comparison of FLOPS required to obtain the correct
periods for SA and FDP. The example used isT 0 = (80; 11); �0 =
(4; 3), x01j0 = (96; 60; 1; 2). The noise is Rayleigh-distributed.

there is no reliable rule for choosing it, and if chosen incorrectly
FDP fails.
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