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In this paper, we show a new blind identi�cation al-
gorithm which is based on second order statistics and
exploits a Single-Input Double-Output(SIDO) model. It
is suitable for a real-time processing system because of
lower operation and high-speed convergence. The pro-
posed blind identi�cation algorithm is superior to con-
ventional algorithms in view of simple structure and the
uniqueness of solution. We also verify its e�ciency by
computer simulation.

1 INTRODUCTION

Intersymbol interference (ISI) occurs in high speed
digital communication due to multipath e�ects and/or
bandwidth constraints. Suppression of ISI or channel e-
qualization, requires either direct or indirect knowledge
of the channel impulse response.
There are famous equalization techniques such as LM-

S or DFE; however, both of them require training se-
quence. Such methods, though attractive in handling
time-variant channels, have to waste a fraction of the
transmission time for a training sequence. Particular
circumstances, such as time-varying channels, may force
frequent re-transmission of the training sequence, lead-
ing to ine�cient use of available bandwidth.
On the other hand, blind identi�cation and equal-

ization as they do not require training sequences can
solve the such problems; therefore, many techniques have
been developed. CMA(Constant Modulus Algorithm),
such as Sato[1] and Godard[2], su�ers from the poten-
tial likelihood of being trapped in a local minima due
to a nonconvex cost function. The trispectrum-based
algorithm[3] can avoid the local minima problem; how-
ever, it requires a high computational complexity. In
addition, a limitation common to both of these meth-
ods is a slow rate of convergence. Recently, many blind
channel identi�cation and equalization algorithms using
second-order statistics[4]-[7] have been proposed. How-
ever, these methods face several di�culties: 1)Noncon-
vex optimization, 2)Channel order determination, and
3)High computational load numerical arithmetic such as
a singular value decomposition.
We have proposed blind channel identi�cation and

equalization algorithm which exploits a SIDO(Single-
Input Double-Output) model[8]. However, this algorith-
m needs to compute the correlation matrix and the in-
verse matrix; therefore, it is di�cult to use it in a real-
time processing system.
In this paper, we propose a new blind channel iden-

ti�cation algorithm that can solve the problems in con-
ventional algorithms. This algorithm is based on second
order statistics and exploits a SIDO model. The pro-
posed algorithm is derived from by solving a set of linear
simultaneous equation recursively so that we can obtain

the unique impulse response. It is suitable for a real-
time processing system because of lower operation and
high-speed convergence.
The organization of this paper is as follows. The char-

acteristics which is derived from SIDO model is shown in
Section II. In Section III, we propose a new cost function
in order to blindly identify the channel. Then the blind
identi�cation equation is formulated and the existence
of its solution is shown. In Section IV, we develop an
algorithm to solve the equation above recursively using
RLS method. In Section VI, computer simulation results
have been shown in order to verify the e�ectiveness of
the proposed algorithm.

2 CHARACTERISTIC OF SI-

DO MODEL

The concept of SIDO model should not be limited to
two physical receivers or sensors. As we has shown, tem-
porally up-sampled with factor2 digital communication
signals can also be modeld as a SIDO system as shown
in Fig.1[8].
As shown in Fig.1, yi(�) denotes the output signal from

the ith channel with the FIR channel impulse response
hi(�) with Li taps, which are driven by the same input
x(�). We assume in here that x(�) is wide sense station-
ary(WSS) signal. As a result, we can describe yi(�) which
are WSS as follows;

yi(n) = hi(n) � x(n) (1)

where � is convolution operation.
In Fig.1, the cross-correlation function(CCF) between

y1(�) and y2(�) can be given as follows.

ry1y2(�) = E[y1(n)y2(n+ �)]

=

L1�1X
k=0

L2�1X
l=0

h1(k)h2(l)Rxx(� � l + k)

= h1(��) � h2(�) �Rxx(�) (2)

Likewise the auto-correlation function(ACF) in terms of
y1(�) is given by

ry1y1(�) = E[y1(n)y1(n+ �)]

= h1(��) � h1(�) �Rxx(�) (3)

By cancelling out Rxx(�) from both Eq.(2) and Eq.(3),
we get

h1(�) � ry1y2(�) = h2(�) � ry1y1(�) (4)



3 BLIND CHANNEL IDENTI-

FICATION

3.1 Cost Function

We de�ne the estimated value of hi(�) as ĥi(�). Substi-

tution ĥi(�) for hi(�) of Eq.(4) and expressing the ACF
and the CCF as instantaneous value, gives

e1(n) = ĥ1(�)�(y1(n)y2(n��))�ĥ2(�)�(y1(n)y1(n��))
(5)

We assume that ĥ1(0) = 1. By expressing Eq.(5) in the
matrix form, we get

e2(n) = y1(n)y2(n)� Ĥ
t
Y (n) (6)

where

Ĥ =
h
ĥ1(1) � � � ĥ1(L1 � 1) ĥ2(0) � � � ĥ2(L2 � 1)

it
(7)

Y (n) = y1(n) [ �y2(n� 1) � � � �y2(n� L1 + 1)

y1(n) � � � y1(n� L2 + 1) ]
t

(8)
Hence, we de�ne a new cost function, which is mean
squared value of Eq.(6), as follows;

J(Ĥ) = E
�
e2
2
(n)

�
= E

�n
y1(n)y2(n)� Ĥ

t
Y (n)

o2�

(9)
where E[�] denotes expectation operation.

3.2 Optimum Solution

First, we rewrite Eq.(9) as

J(Ĥ) = r � 2Ĥ
t
P + Ĥ

t
RĤ (10)

where

R = E
�
Y (n)Y t(n)

�
(11)

P = E [y1(n)y2(n)Y (n)] (12)

r = E
�
fy1(n)y2(n)g

2
�

(13)

The error surface and the contour of cost function J
are illustrated in Fig.2 and Fig.3. Impulse response of

channels are ĥ1 = [1 1:5] and ĥ2 = [2]. From the contour
map we can see the existence of the global minimum.
In order to derive the optimum solution of Eq.(10), we

take partial di�erential as

@J

@Ĥ
= 2RĤ � 2P (14)

Furthermore, by setting Eq.(14) equals 0, we get

RĤ = P (15)

We then �nally obtain Ĥ by taking a matrix inversion
in Eq.(15) as

Ĥ = R�1P (16)

As a result, if R is nonsingular matrix we can estimate
channel by only using received signal yi(�). In other
words, we can blindly identify the channel.

3.3 Condition For Channel Identi�abili-

ty

[Theorem]
Since Eq.(11) is nonsingular matrix, Eq.(10) has a u-

nique solution.
[Proof of theorem]
We �rst de�ne

�(n� ��) = y1(n)y2(n� ��) (17)

�(n� ��) = y1(n)y1(n� ��) (18)

��; �� : ragtime

where yi(�) is WSS. Then we obtain
r��(��) = E[�(n)�(n � ��)] (19)

r��(�� � ��) = E[�(n� ��)�(n � ��)] (20)

r��(��) = E[�(n)�(n � ��)] (21)

The above formulas indicate that the ACF and the CCF
between �(n� ��) and �(n� ��) depend on its ragtime.
In this case, the Eq.(11) may be rewritten as

R =

�
r�� r��

r�� r��

�
(22)

where

r�� =

2
66664

r��(0) r��(�1)
r��(�1) r��(0)

...
...

r��(�L1 + 3) r��(�L1 + 2)
r��(�L1 + 2) r��(�L1 + 1)
� � � r��(�L1 + 3) r��(�L1 + 2)
� � � r��(�L1 + 4) r��(�L1 + 3)

. . .
...

...
� � � r��(0) r��(�1)
� � � r��(�1) r��(0)

3
77775

(23)

r�� =

2
66664

r��(0) r��(�1)
r��(�1) r��(0)

...
...

r��(�L2 + 2) r��(�L2 + 3)
r��(�L2 + 1) r��(�L2 + 2)
� � � r��(�L2 + 2) r��(�L2 + 1)
� � � r��(�L2 + 3) r��(�L2 + 2)

. . .
...

...
� � � r��(0) r��(�1)
� � � r��(�1) r��(0)

3
77775

(24)

r�� =

2
66664

�r��(1) �r��(0)
�r��(2) �r��(1)

...
...

�r��(L1 � 2) �r��(L1 � 3)
�r��(L1 � 1) �r��(L1 � 2)

� � � �r��(�L2 + 3) �r��(�L2 + 2)
� � � �r��(�L2 + 4) �r��(�L2 + 3)

. . .
...

...
� � � �r��(L1 � L2) �r��(L1 � L2 � 1)
� � � �r��(L1 � L2 + 1) �r��(L1 � L2)

3
77775
(25)



r�� = rt�� (26)

We de�ne a vector v of dimension (L1 + L2 � 1) � 1 in
order to get the scalar parameter a as follows

a = vtY (n)

= Y t(n)v (27)

Then we get
E[a2] = E[vtY (n)Y t(n)v]

= vtRv (28)

where E[a2] > 0 (29)

Hence,
vtRv > 0 (30)

It shows that R is a positive de�nite ma-
trix,i.e.nonsingular matrix. Consequently, we can con-
clude that R has an inverse matrix[9].

2

4 RECURSIVE ALGORITHM

USING RLS

In order to implement Eq.(16) in real-time process-
ing system, we show a recursive algorithm using RLS
method. First, we assume that each matrix of Eq.(16)
has time index n and then rewite Eq.(16) as follows

R�1(n)P (n) =

fR(n� 1) + Y (n)Y t(n)g�1

fP (n� 1) + y1(n)y2(n)Y (n)g (31)

According to the matrix inversion lemma,

(A+BC)�1 = A�1 �A�1B(I +CA�1B)�1CA�1

we can rewrite the �rst term of the right side of Eq.(31)
as follows

R�1(n� 1)�R�1(n� 1)Y (n)
fI + Y t(n)R�1(n� 1)Y (n)g�1Y t(n)R�1(n� 1)

(32)
Here we de�ne

Q(n� 1) = R�1(n� 1) (33)

then

K(n) = Q(n� 1)Y (n)fI + Y t(n)Q(n� 1)Y (n)g�1

(34)
Also we de�ne

Ĥ(n� 1) = Q(n� 1)P (n� 1) (35)

By substituting Eq.(34)-Eq.(35) into the right side of
Eq.(31), we can rewrite

fR(n� 1) + Y (n)Y t(n)g�1fP (n� 1) + y1(n)y2(n)Y (n)g

= Ĥ(n� 1) +K(n)fy1(n)y2(n)� Y
t(n)Ĥ(n� 1)g

(36)

As a result, a recursive algorithm using RLS method is
summarized as follows;

Step1 K(n) =
Q(n� 1)Y (n)

f1 + Y t(n)Q(n� 1)Y (n)g
(37)

Step2 Ĥ(n) = Ĥ(n� 1) +K(n)

fy1(n)y2(n)� Y
t(n)Ĥ(n� 1)g (38)

Step3 Q(n) = Q(n� 1)�K(n)Y t(n)Q(n� 1)(39)

where initial values are given by

Ĥ(0) = 0 (40)

Q(0) = cI (c is constant value) (41)

5 SIMULATION

We show a computer simulation under the following
conditions.

Unknown system 24-tap FIR LPF
Input signal x(n) 16QAM signal

Evaluation IRER = 10log10
jh� ^hjtjh� ^hj

hth
[dB]

We use the channel recommended by ITU-T in our sim-
ulation. Fig.4 shows its characteristics in the frequen-
cy domain. The convergence property of the proposed
scheme evaluated by IRER(Impulse Response Estima-
tion Ratio) is shown in Fig.5, which shows that the chan-
nel is well estimated and the convergence speed is fast.
As we can see, the proposed algorithm is e�ective.

6 CONCLUSION

In this paper, we have proposed a new blind channel
identi�cation algorithm which is based on second-order
statistics and exploits SIDO model. We have developed a
recursive algorithm using RLS method and have veri�ed
the e�ectiveness of the proposed algorithm by simula-
tion. As a result, we have shown that we are able to
identify channel blindly with lower operation and high-
speed convergence.
The future work is to develop adaptive algorithms us-

ing stochastic gradient method.
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Figure 3: contour of the cost function
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Figure 4: frequency response of the channel

0 1000 2000 3000 4000 5000
−300

−250

−200

−150

−100

−50

0

50

Iteration

IR
E

R
 [d

B
]

Figure 5: convergence property of IRER(h2)


