CLASSIFICATION OF MODULATION MODES
USING TIME-FREQUENCY METHODS

Helmut Ketterer® Friedrich Jondral® Antonio H. Costa®

YUniversitat Karlsruhe, Institut fir Nachrichtentechnik
D-76128 Karlsruhe, Germany
int@etec.uni-karlsruhe.de
JUniversity of Massachusetts Dartmouth, Department of Electrical and Computer Engineering
285 Old Westport Road, North Dartmouth, Massachusetts 02747-2300, USA
acosta@umassd.edu

ABSTRACT e
signal

This paper proposes a new technique for feature extraction of I
modulated signals which is based on a pattern recognition _ _l_
approach. The new algorithm uses the cross Margenau-Hill ety 5 0 covaciamce covariance
distribution, autoregressive modeling, and amplitude variations e s modet (ARZ) modell(ARzm
to detect phase shifts, frequency shifts, and amplitude shifts, set1-f__0.005, get frequencies
respectively. Our method is capable of classifying PSK2, PSK4, io1 e ey
PSK8, PSK16, FSK2, FSK4, QAM8 and OOK signals. Unlike CMHD —
most of the existing decision-theoretic approaches, no explicit a seti-i+l, cluster with
priori information is required by our algorithm. Consequently, l f=£+0.0001 algorithm
the method is suitable for application in a general non- et ! Tocation ot
cooperative environment. Furthermore, our approach is CMHD clusters to q?;?é
computationally inexpensive. Simulation results on both l
synthetic and “real world” short-wave signals show that our extract l
approach is robust against noise up to a signal-to-noise ratio levels Cr;?fgms modified
(SNR) of approximately 10 dB. A success rate greater than 94 ] ool (AR2)
percent is obtained. Cluster with extract Tovels

C-Iueans L=le1_1gtl11;,t;lasll mean—filter

1. INTRODUCTION algorithm ma]orl length—ceil( 1/f)

Modulation classification of digital signals has been of interest Tocation of “°® _l
for more than 20 years. In short-wave communication, there is a | | chsterstode” s e
need to classify the modulation mode of an incoming signal hoose fwith I
before demodulation is done. Basic modulation classification largest L variance
systems include three subsystems, namely the preprocessing fs?ﬁ}%i
subsystem, the feature extraction subsystem, and the
classification subsystem. In the preprocessing subsystem, the @ @ &)

signal is translated to the baseband and filtered. The feature
extraction subsystem (see Fig. 1) maps the signal into a feature

vector that is used by the classification subsystem (see Fig. 2) tqsjgyure 1: Overview of the feature extraction subsystem.
assign the signal to a specific modulation class. Pattern

recognition and decision-theoretic methods for modulation 2. CROSS MARGENAU-HILL DISTRIBUTION
classification can be found in the literature.

Classification Subsystem

To extract information about the amplitude, frequency, and phase

In 1969, Weaver et al. [1] used the signal’s spectral Contentfrom a digitally modulated signal, we must represent the signal
and a nearest neighborhood classifier. Liedtke [2], Jondral [3], gitally - gnal, must rep . 9
not only with its magnitude but also with its phase information.

and many subsequent approaches introduced the instantaneo . . Lo
frequency and the phase histogram into their feature vector. Inuﬁqe Margenau-Hn! (gume-frequency) dlsFr|but|on (MHD), a
member of Cohen’s fixed kernel class, is known to preserve

1988, Polydoros and Kim [4, 5] proposed the use of likelihood : . : '
functionals for a symbol-synchronous classifier and, in 1990, phase information. The cross MHD is defined by [11]

statistical moments of the signal phase were used. In 1992, ” « « i

Reichert [6] proposed a modulation classifier based on higher CMHD (t, f)=%I[x(t+r)y (O)+x()y (t_T)]e 2. (1)
order statistics. In 1994, the wavelet packet transform was used —o

by Ta [7], and the continuous wavelet transform was used by Lin

and Kuo [8, 9] and Ho [10] as the first representatives of time-

frequency methods.



Feature Extraction Subsystem
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Figure 2: Overview of the classification subsystem.

We set y(t):ejZ"ch, where f, denotes the carrier

frequency of the signal under analysis. If the carrier frequency is
not known a priori, it can be estimated in two steps as described
in Section 2.2. The CMHD expression in Eq. (1) simplifiesto

CMHDX(I, f) :%J'a((ﬁr)e'jznfct +X(t)e—j2nfc(t—r) Ee—jznfrdT

-1 J'{[x(t+T)+x(t)e12"f°T ]e-izm}e-ﬂnﬁm

-0

@)

and a straightforward discretization of Eq. (2), which is needed
for computation, leads to aias-free results for signals sampled at
or above the Nyquist rate provided the anaytic signa is used.
Thisis described in [12].

2.1 FEATURESOF THE CROSSMARGENAU-
HILL DISTRIBUTION

The CMHD, as given by Eq. (2), shows terms that are related to
phase shifts of the signal under analysis in a row along time that
islocated at the carrier frequency. Thisrow is extracted from the
CMHD as shown in Fig. 3. Because the resulting function of
time, q(t), defined by

q(t):|C|v|HD(t,f = fc)|, ©)

200
=
2
o E
R 0 Time ndecato 12
= (b)
200
[1h]
-900 =
025 o £
Fraqiency 0250 Timelndel © £
(@ 300
0 100 Time Index 400 512
(€)
level 1 | level 2 | level 3 | level 4
PSK 2 100
PSK 4 100 0
PSK 8 100 74 0
PSK16 | 100 74 40 0

(d)
Figure 3: (a) CMHD, (b) one column along time of the CMHD,
and (c) feature function of a PSK2 signal. (d) Relative amplitude
levels in the feature function for PSK2, PSK4, PSK8 and PSK16
signals.

2.2 CARRIER FREQUENCY ESTIMATION

If the carrier frequencyf,, is not known, we estimate it as
follows. First, an approximation is obtained by modeling the
signal under analysis via an autoregressive modified covariance
model of order 3 and looking for the frequency with the highest
peak in the resulting power spectral density (PSD). This
frequency estimate is found to be moamecurate than that
provided by a fast Fourier transform (FFT) based estimation
because phase shifts in the signal cpoes to changes in the
instantaneous frequency [8].

In the second step, the following iterative process is done
for several closely spaced frequencigsleading to the correct
carrier frequencyf.. From the CMHD, the feature function

q(t) can be extracted for each frequenigyas described in

Section 2.1 and shown in Fig. 3. For the correct frequency,
constant levels show up ilq(t). If the frequency is chosen

inaccurately, a sinusoidal component is superimposed.

2.3 CLASSIFICATION OF M-ARY PSK
MODULATION TYPES

Low values of the feature function’s gradient indicate the
presence of constant levels. Hence, all samplesq(ﬁ)

corresponding to a gradient smaller than a threshold are marked.
We have found tha¥/;s of the maximum value of the gradient

performs well as the threshold. The meanq(!f) is calculated
for each interval of marked samples that is longer than

contains our phase parameter, we name it the “feature function o8.round(log(N)-7) samples, where N is the number of samples in

the CMHD” or simply the “feature function”. For M-ary PSK
signals, specific levels are present in the feature funa{n
Fig. 3(d) depicts the number of and the relative level amplitudesoptained.

for PSK2, PSK4, PSK8 and PSK16 signals.

the signal. By applying the c-means algorithm, the cluster
centers ¢ C, .., and G sorted in ascending order, are
Then, a fuzzy logic classifier decides how many
different cluster centers are found by the c-means algorithm.



3. AUTOREGRESSIVE MODIFIED 4. SIMULATIONS
COVARIANCE MODELING For a signal-to-noise ratio (SNR) of 15 dB, the feature functions

By modd”]g frwuency_sh”:t ke)/”']g (FSK) sgnals with an of Synthe“c 512-p0|nt PSKZ, PSK4, PSK8 and PSK16 Signals
autoregressive modified covariance model, the power spectral are depicted in Fig. 4(a)-(d), respectively. The presence of
density (PSD) can be observed. Our approach uses spectral constant levels in the feature function, located as shown in Fig.
peaks in the PSD to determine the number of frequencies in the 3(d), can clearly be observed.

signal. To be able to distinguish noise from FSK modulation 200 200
types, the order of the AR model is chosen high. Further, a high L n
model order helps in resolving closely spaced frequency = 2
components. Simulations show that a model order of 20 works E E mrdm
well. 200 200

By applying a smoothing filter in the time domain whose 0 QTD”D,HE |ndEX4DD o12 o QTDi,Dm |ndEX4DD o1z
length is larger than one period of the signal, the envelope of the (a) (b)
signal’'s amplitude is obtained. The variance of the envelifpe, 200 200
is a parameter which monitors amplitude changes in the signal. 5 =
In our approach, the smoothing filter maps each sample to the é é MW
mean of the magnitude of all samples in a rectangular window of < T
length L. The length of the window, L, matches the carrier 2005 200 205 52 2005 il TR,
period. This length is approximated as the reciprocal value of the Tim(ecl)ndex Tim(edl;dex

peak frequencyf,, of an autoregressive modified covariance
model.  Simulations show that order 3 is sufficient for

approximating the carrier period of ASK and QAM signals.
31 CLASSIFICATION OF M-ARY FSK By usi‘rlwg signals“that contain the same symbols with a_SNR of 10
MODULATION TYPES dB or “real world sho_rt-w_ave signals, the featur_e function §hov_vs
correctly located, distinctive constant levels as illustrated in Fig.
We use the mean of the PSD as a threshold to decide on & and Fig. 6. Accordingly, the error classification rate (ECR) is
spectral component present in the signal. All frequencies with alow.

Figure 4: Feature function of a (a) PSK2, (b) PSK4, (c) PSK8
and (d) PSK16 signal with a signal-to-noise ratio of 15 dB.

PSD higher than the mean of the PSD are clustered into 4,,, 200
centers, ¢ C, GC; C, using the c-means algorithm. The o
following distances are then computed: = =
d;=C,-C,, d,=C5-C,, 0;=C4-Cs. 4) E E
From these distances, two parameters can be derived as EDDD 200 400 512 2005 200 400 512
Time Index Time Index
dmax:maX(Q-dZ-dB)v t:06'dnax (5) (a) (b)
The locations of these four cluster centers are used to decide if 200 200
FSK modulation type is present in the signal. In order to qualify € g
for a FSK modulation type, the cluster centers have to maintain é é
the constraints given in Table 1 whérelenotes logical OR and T T
Odenotes logical AND. 2005 200 400 512 QDDEI 200 400 512
Time Index Time Index
(© (d)
FSK2 FSK4 Figure 5: Feature function of a (a) PSK2, (b) PSK4, (c) PSK8
. di>t Od>t O | (d>t Ody>t) O (d>t Ody>t) O and (d) PSK16 signal with a signal-to-noise ratio of 10 dB.
Constraint 1
d;>t (d>t O dz>t)
Constraint 2 Ora>Cy Ora>Cy The PSD of a FSK2 and a FSK4 signal, estimated by the

modified covariance approach, is depicted in Fig. 7(a)-(b). Fig.

Table 1: Distance constraints for spectral peaks in FSK signals. 8(b) illustrates the envelope of the OOK signal depicted in Fig.
8(a). The two different levels of the amplitude can be perceived.

3.2 CLASSIFICATION OF ASK AND QAM The ECR - performing 500 simulations - with synthetic

MODULATION TYPES PSK2, PSK4, PSK8, PSK16, FSK2, FSK4 and QAMS8 signals

with a SNR of 10 dB are shown in Table 2. Table 3 refers to the

To decide whether the amplitude of a signal under analysis iSECR for “real world“ short-wave signals.

modulated or not, the variance of the envelope is checked to see

if it exceeds a threshold. The decision makirmpua the 5. CONCLUSION

amplitude informationa , is implemented by We demonstrated that the cross Margenau-Hill distribution is a
a | if o?>18 6 powerful tool for extracting the phase information from a signal.
a= otherwise ' ©) For the estimation of the carrier frequency, the CMHD can be

! used. Frequency and amplitude information can be obtained by
modeling a signal with an autoregressive model of high order and



checking for the number of peaks in the model. All feature
extraction methods are computationaly simple. The proposed
implementation clearly outperforms classica methods for
modulation recognition.  The classification subsystem is
implemented in a straightforward manner by using a decision
tree. No explicit a priory information is used by our modulation
classifier.
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Figure 7: Power spectral density using the modified covariance

model of order 20 of a (a) FSK2 and (b) FSK4 signal.
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Figure 8: (a) OOK signal and (b) envelope of the OOK signal.

with 10 dB SNR classified to

OOK | FSK2 [ FSK4 [ PSK2 | PSK4 | PSK8 | PSK16 | QAM8 | noise
00K 98 2
FSK2 99 1
FSK4 2 98
PSK2 98 2
PSK4 1 98 1
PSK8 3 96 1
PSK16 1 99
QAM8 1 2 97
noise 1 2 3 94

Table2: Error classification rate for synthetic signals with a SNR
of 10 dB.

classified to

OOK | FSK2 | FSK4 | PSK2 | PSK4 | PSK8 | PSK16 | QAMS8 | noise
OOK || 98 2
FsK2 99 1
FSK4 2 %8
PSK2 99 1
PSK4 1 . |1
PSK8 1 o7 |2
PSK16 1 1 %8
QAMB 1 99

Table 3: Error classification rate for rea world short-wave
signals.
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