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ABSTRACT
This paper considers the direction-of-arrival (DOA) estimation id-
entifiability problem for uncorrelated Gaussian sources andnon-
uniform antenna arrays. It is now known that sparse arrays al-
ways suffer frommanifold ambiguity, which arises due to linear
dependence amongst the columns of the array manifold matrix
(the “steering vectors”). While the standard subspace DOA esti-
mation algorithms such as MUSIC fail to provide proper unam-
biguous estimates under these conditions, we demonstrate that in
most cases involving uncorrelated Gaussian sources, manifold am-
biguity does not necessarily imply nonidentifiability. An effective
manifold ambiguity resolution algorithm is introduced. Asuperior
number of uncorrelated Gaussian sources (more than sensors) may
also be unambiguously localised by sparse arrays under specified
identifiability conditions. While manifold ambiguity does not ap-
ply to superior scenarios, a similar “co-array manifold ambiguity”
phenomenon may compromise DOA estimation. The proposed al-
gorithm can also resolve such ambiguity in all identifiable cases.

1. INTRODUCTION

The problem of specifying the conditions under which DOA esti-
mation of narrow-band sources has a unique solution is “of crucial
importance” [10]. In [9], the conditions that specify the maxi-
mum number of sources that can be uniquely localised are found
in terms of the number of sensors (M ) and the rank of the inter-
sensor correlation matrix, under the assumption that “any subset of
M distinct steering vectors from the array manifold is linearly in-
dependent”. It was mentioned in [9, 10] that this assumption “im-
poses certain constraints on the array geometry”. At the same time,
the implications of such exceptions have not been fully recognised
due to the perception that “these constraints, however, do not pose
a serious problem and can easily be come by” [10].

Recent results obtained by Proukakis and Manikas [7] have
proven that these constraints do pose a serious practical problem
for all nonuniform linear arrays (NLA’s) mentioned in thelitera-
ture. They demonstrated that a sufficient condition for the presence
of manifold ambiguity inanylinear array is

dM > M � 1 (1)

wheredM is the array’s aperture measured in half-wavelengths.
Moreover, they introduced an approach to calculate the “ambigu-
ous generator sets” (AGS’s) of any NLA,ie. the sets of DOA’s
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that correspond to linearly dependent steering vectors. By virtue
of (1), all half-wavelength sparse integer linear arrays are man-
ifoldly ambiguous, and therefore traditional subspace techniques
(eg. MUSIC) fail to properly identify sources with a rank-deficient
array manifold matrix. Even so, this failure is algorithm-specific
and does not imply nonidentifiability; for uncorrelated sources,
this fact is quite evident forfully-augmentableNLA’s [2] which
may be treated by the direct augmentation approach (DAA) intro-
duced by Pillaiet al. in [6] (see [2] for details).

Moreover, the identifiability conditions defined in [10] for un-
ambiguous scenarios uses anarbitrary intersource correlation ma-
trix of a given rank, and consequently cannot be applied beyond
the “conventional” number of sources,m < M .

In [9], the class of signals was later restricted “to certain loci
in the complex plane”, which almost doubled the maximum num-
ber of identifiable sources. This makes it clear that thea priori
statistical model of the signals is critically important,as well as
the antenna array geometry.

For these reasons, we investigate the correspondence between
identifiability and manifold ambiguity in sparse arrays for some
important Gaussian source models. For all situations where mani-
fold ambiguity does not lead to nonidentifiability, we need an ap-
propriate technique to properly resolve manifold ambiguity. Lastly,
since NLA’s permit DOA estimation beyond the limit of the “con-
ventional case”, we need to comment on the issue of identifiability
in the “superior case” (m �M ), where manifold ambiguity loses
its original meaning, but a similar phenomenon occurs.

2. BACKGROUND: MANIFOLD AMBIGUITY, LOCAL
AND POINTWISE NONIDENTIFIABILITY

Consider anM -element NLA, with sensors located at positions
d � [d1; : : : ; dM ] measured in half-wavelength units; and set
d1 = 0 for convenience. The problem of DOA estimation for
m Gaussian plane wave sources impinging on a linear antenna ar-
ray consisting ofM identical omnidirectional sensors can be re-
duced to estimation of the unknown azimuthal angle parameter
� � [�1; : : : ; �m]T in the equation

y(t) = S(�)x(t) + n(t) for t = 1; : : : ;N (2)

wherey(t) 2 CM�1 is the column vector of array sensor outputs
observed at timet (the “snapshot”),S(�) 2 CM�m is the array
manifold matrix,x(t) 2 Cm�1 is the vector of Gaussian signal
amplitudes, andn(t) is additive noise. We assume this noise is



white and Gaussian, with known power�:

E
�
n(t1)n

H(t2)
	

=

�
�IM for t1 = t2

0 for t1 6= t2 ;
(3)

where Ef�g is the expectation operator. Note that the number of
sourcesm is supposed to be knowna priori. The array manifold
matrix isS(�) � [s(�1); : : : ; s(�m)] where each

s(�j) =
h
1; exp

�
i�d2 sin �j

�
; : : : ; exp

�
i�dM sin �j

�iT
(4)

is a so-called steering vector. Traditionally, it has been assumed
that the manifold matrixS(�) is of full (column) rank (eg. [8, 9,
10]). With NLA’s, we must abandon this assumption, due to (1).

Recall that theco-arrayof a linear array (d0) is the sorted set
of nonduplicated elements ofD (the set of all intersensor differ-
ences), thus the number of co-array elements is

MCA =
1

2
M(M � 1) + 1�R (5)

whereR is the number of covariance lag redundancies.
Definition 1 Let y1; : : : ; yn be generated by a parametric model
M�, with � 2 �, characterized by some p.d.f.f(y; �). Then
the parameter� is nonidentifiableat�� 2 � if there exists�0� 6=
�� 2 � such that

f(y; ��) = f(y; �0�) almost surely (a.s.): (6)

It is important to note that nonidentifiability may not preclude
local identifiability (ie. consistency and asymptotic efficiency of
the ML estimate within some open setO 3 ��, where�� is the
“true” value). This is because nonidentifiability may exist at iso-
lated points of the set�, while traditional regularity conditions are
definedlocally. If (6) is satisfied at one or more isolated points in
�, then we call thispointwise nonidentifiability .
Definition 2 LetM� be a parametric model, with� 2 �. Then
the parameter� is locally nonidentifiableat �� 2 � if, for any
open setO � � such that�� 2 O and any" > 0, there exists
a�0 2 O such that the modelM� is Cramér–Rao regular at�0,
with Fisher information matrix (FIM)F�0 satisfying

0 < F�0
< "I` (7)

whereI` is the`� ` identity matrix and̀ is the parameter size.
Theorem 1 LetM� be a parametric model with a continuously
differentiable functionlog f(y; �) and a continuous FIMF�, both
at �� 2 �. Assume thatM� satisfies the standard regularity
conditions, except for the strict positivity ofF�, and letF�

�

be
singular. Then� is nonidentifiable (at least locally) at��.

For proof, see [4]. The meaning of Definition 2 and Theorem 1
is that, given a singular FIM (and some other technical conditions
stated above), there are only two possibilities:

1. the DOA estimation variance may be arbitrarily large in the
vicinity of the “bad point” (CRB!1), or

2. the model is nonidentifiable in some open set which con-
tains this “bad point”.

In (1), any obviously uncontrollable variance means in prac-
tice a lack of consistency.

Given these definitions, it is straight-forward to demonstrate
that the manifold ambiguity condition coincides with the point-
wise nonidentifiability condition for the following two Gaussian
models:

� Conditional Model Assumption (CMA) [8]:

y(t) � CN
�
S(�)x(t); �IM

�
� rank-one Unconditional Model Assumption (UMA) [8]:

y(t) � CN
�
0; �IM + p S(�)b bH SH(�)

�
:

Indeed, sincex(t) and b are arbitrary complex vectors, point-
wise nonidentifiability means that for some givenf��; x�(t)g (for
CMA, or f��; b�g for rank-one UMA) there exists another set
f�0�; x

0
�(t)g (or f�0�; b

0
�g) with at least one�0�j different from

��j:

S(��)x�(t) = S(�0�)x
0

�(t) or S(��)b� = S(�0�)b
0

� : (8)

Suppose that�0� differs from �� at a single DOA, so that the set
~�� = ��[�

0
� consists of(m+1) points, withS(~��) 2 CM�(m+1)

being the manifold matrix for all(m+ 1) points. Then the point-
wise nonidentifiability condition (8) exists if and only if the matrix
S(~��) is (column) rank-deficient,ie.

rankS(~��) �m : (9)

This single necessary and sufficient condition is exactly the man-
ifold ambiguity condition studied by Proukakis and Manikas [7].
SinceS(~��) is anM�(m+1) matrix, it is clear that for these two
signal models,anym �M sources are always pointwise noniden-
tifiable, while for linear arrays withm < M sources that satisfy
the sufficient condition for manifold ambiguity (dM > M � 1),
there will always exist an ambiguous DOA set that satisfies (9).

For the general UMA model, which involves anarbitrary pos-
itive-definite matrixB and a distribution

y(t) � CN (0; �IM + S(�)B S
H(�)) ; (10)

the nonidentifiability condition means that

S(��)B� S
H(��) = S(�0�)B

0

� S
H(�0�) (11)

and for a covariance matrixB > 0 that is not restricted to any
specific class, one can prove that (9) is sufficient for the noniden-
tifiability condition (11) to take place. Thus manifold ambiguity
always implies statistical nonidentifiability for this UMA model.

Let us now concentrate on the model (10) with uncorrelated
sources, whereB = diag[p1; : : : ; pm] > 0. According to Defi-
nition 1, the parameters�� andp� are pointwise nonidentifiable if
there exists another set of DOA’s�� 6= �0�, �� 2 � and a set of
powersp0

�
> 0 such that

mX
j=1

p�j S(��j) S
H(��j) =

mX
j=1

p
0

�j S(�
0

�j)S
H (�0�j) : (12)

If only the DOAs�� are specified, then nonidentifiability occurs
when we can find the three setsp� > 0, p0� > 0 and�0� that
satisfy (12). In other words, for some specific set of powersp

�
,

any given scenario may well be identifiable, whereas when these
powers are not specified by thea priori model, there may well be a
particular set of powersp

�
andp0

�
that results in nonidentifiability.

For fully-augmentable arrays (integer NLA’s whereD is com-
plete,ie. allM� contiguous covariance lags are present), the asso-
ciated co-arrays are always uniform withM� elements. Using the
properties of Vandermonde matrices, it is straight-forward to show
that under this uncorrelated signal model, any scenario with

M � m < M� (13)



sources is identifiable, regardless of manifold ambiguity, and in-
deed that existing subspace-type techniques fail in these cases.

For partially-augmentablemaximum-contiguous-lagarrays [1],
we have

M � Nmax �
1

2
M(M � 1) (14)

(whereNmax is the greatest multiple of the unit spacing such that
all lags up toNmax inclusive are present), these conclusions are
also valid provided thatm < Nmax.

A less trivial problem regarding identifiability and manifold
ambiguity conditions exists for partially-augmentable arrays with
an “early” gap. Let the number of gaps beG, and letr be the
(M� � G)-variate vector containing all distinct spatial covariance
lags for this NLA:r = [frjg], rj 2 D. Then

r = A(��)p� (15)

whereA(��) 2 C(M��G)�m is the co-array manifold matrix.
Since the Vandermonde properties are lost inA(��), finding the
identifiability condition is not trivial. In principle, there could be
solutions of the system

A(��) p� = A(�0�) p
0

� for �� 6= �
0

�; p�; p
0

� > 0 :
(16)

Let us firstly define the necessary conditions for such a solution to
exist. As before, suppose that at least one of the DOA’s in the set
�0� is different from the set��. Then~�� = �� [ �

0
� consists of

(m+ 1) points, and the co-array manifold ambiguity condition

rankA(~��) � m (17)

becomes the first evident necessary condition. Since the elements
of the vectorsp

�
andp0

�
are real numbers, (16) can be rewritten as

Ar(~��)a = 0 (18)

where

Ar(~��) =

�
ReA(~��)

ImA(~��)

�
2 R(2(M��G)�1)�(m+1) (19)

(the first row of the imaginary part is dropped, since it is trivially
equal to zero), and

a =

2
66664

p�1
p�2 � p0�2

...
p�m � p0�m
�p0�m+1

3
77775 for p�; p

0

� > 0 : (20)

Thus a nonzero solution of this system exists only if the real matrix
Ar(~��) is rank-deficient:

rankAr(~��) � m: (21)

Clearly this second necessary condition is significantly different
from the manifold ambiguity condition rankS(~��) � m, and from
the co-array manifold ambiguity condition rankA(~��) � m.

In general, the AGS~�� may consist of an arbitrary number of
directionsm+1 � ` � 2m, while the rank of the matrixAr(~��)
could be(m��) for 0 � � � m�2. Then the general sufficient
condition for some fixed set of source powersp

�
is

�x+ z =

�
p
�

0

�
m

`�m
(22)

where� 2 R`�(`�m+�) is the fundamental solution to the sys-
tem (18), andz = [0; : : : ; 0 j z`�m+1; : : : ; z`]

T with zj � 0.
The solution to (22) may be found by solving the following linear
programming (LP) problem:

min
`X

j=1

(�1j+�2j) for �(x1�x2) + z + �1 � �2 =

�
p�
0

�
(23)

wherex1; x2 2 R
(`�m+�)�1
+ and�1; �2 2 R`�1

+ (ie. positive
real numbers). The necessary and sufficient conditions (18) and
(20) are satisfied if this minimum is zero.

Thus,for any Gaussian scenario�� with uncorrelatedsources
and rank-deficient matrixAr(~��), nonidentifiability occurs if the
solution of the LP problem (23) is equal to zero. Note that this
condition is also true for the superior case (M � m < M�). Also,
with some obvious modifications toAr(~��), the same procedure
and conclusion may be obtained for noninteger arrays.

When the set of source powers is arbitrary, the corresponding
LP problem may be formulated as follows:

min
4X

k=1

`�mX
j=1

�kj for �(x1�x2)+

"
0

z01
0

#
�

"
0

z02
0

#
+

+

"
�z001
0

z002

#
+

"
�11
0

�1;m+1

#
�

"
�21
0

�2;m+1

#
= 0 (24)

wherex1; x2 2 R
(`�m+�)�1
+ ; z01; z

0
2 2 R

(2m�`)�1
+ ; and

z001 ; z
00
2 ; �k 2 R

(`�m)�1
+ .

The above necessary (17) and (21) and sufficient conditions
(ie. minimum of (23) or (24) is zero) for nonidentifiability allow
us to analyze any manifold ambiguity generator set (AGS) [7].

Moreover, the Proukakis–Manikas AGS-finding method could
also be useful in searching for pointwise nonidentifiable superior
scenarios. Indeed, by applying their algorithm to the co-array so
as to find AGS’s that satisfy (17), we may search amongst these
sets for those that meet the necessary (21) and sufficient conditions
(23) and (24). Note that if such pointwise nonidentifiable scenarios
exist, they may consist of isolated DOA points,ie. for a given��,
only a finite number of different sets�0� may be found. Once again,
this means that in the vicinity of the true DOA’s��, ML estimation
may well be locally consistent. Nevertheless, for the admissible
number of sourcesm <MCA, it is possible to find some scenarios
that are not identifiable evenlocally, that is, in an arbitrarily small
neighborhood of the true DOAs.

This local nonidentifiability phenomenon is illustrated by the
M = 5, m = 6 scenario for theminimum-gaps(Golomb) array:

dPA = [0; 1; 4; 9; 11] ; w =
�
� 5

6 ; �
1
2 ; �

1
6 ;

1
6 ;

1
2 ;

5
6

�
(25)

This scenario gives rise to a diagonal 5-variate covariance matrix
R, which is invariant under angle shifts in all six directions.

3. NONAMBIGUOUS DOA IDENTIFICATION BY
MODEL-FITTING

For a conventional number of uncorrelated Gaussian sources, MU-
SIC applied toR̂ gives(m+�) DOA estimates,� > 0, for every
manifoldly ambiguous scenario (9). In the corresponding superior
case, similar co-array ambiguity occurs for every scenario satisfy-
ing the co-array manifold ambiguity condition (17), when MUSIC



is applied to the augmentedMCA-variate covariance matrix of the
virtual array (the co-array in this case). The details of this gen-
eralised augmentation approach (GAA) are discussed elsewhere
[1, 3, 5]. Here we formulate a method which rules out the� spuri-
ous DOA’s by matching the overall signal model, provided that it
is known to be identifiable.

Let A(~̂��) 2 C
MCA�(m+�) be the co-array manifold matrix

corresponding to the manifoldly ambiguous set of DOA estimates
~̂��. Let r̂ be theMCA-variate vector of all different covariance
lags, estimated using the direct data covariance (DDC) matrixR̂

and the DAA. Recall that for the absolutely accurate parameters
~�� andr, identifiability means that the linear equation

A(~��) p = r with p 2 Rm+� (26)

has preciselym positive entries corresponding to the true DOA’s
and precisely� zero entries corresponding to the spurious DOA’s.

Thus for the estimated parameters~̂�� andr̂, we may search for the
best fit over all(m+�) entries of the constrained solution̂p � 0,
then to associate them greatest powers with the true DOA’s.

We solve this “diagonal fit” problem (DFP) with a LP method,
the details of which are presented in [4]. The solution of the DFP
does not depend on the array geometry, and could be easily gener-
alized for arbitrary nonlinear arrays (circular, 2–D,etc.), provided
that identifiability is guaranteed for the given scenario.

To demonstrate the efficiency of manifold ambiguity resolu-
tion by diagonal fitting, we consider the noninteger array [7]

dNI = [0; 1:2; 3:4; 4:6] (27)

whose co-array is

d
0

NI = [0; 1:2; 2:2; 3:4; 4:6] (28)

and hence only up to four sources could be identifiable. For this
reason, we are only able to explore (up to) three-source conven-
tional scenarios, so we choose the following subset of one partic-
ular AGS for our simulations:

w3 = [�0:8391; �0:4043; 0:4652] : (29)

We perform 1000 random trials where the sources have equal power
and a SNR of 20 dB. Table 1 shows the probability of correct iden-
tification for various sample sizes. Apart from the very high suc-
cess rates achieved, it is appropriate to comment that since this
scenario has widely separated sources, all trials were “regular”,
except atN = 10 where MUSIC failed to detect the four peaks in
only 11 trials. By “regular”, we mean that (a) MUSIC(R̂) gave at
least(m+�) peaks, and (b) these peaks werenormalDOA esti-
mates [2] (ie. no main peaks were merged).

The consistency of these results are shown by the second sim-
ulation results over 10000 trials, which is able to be quickly per-
formed due to the very efficient implementation in standard com-
puting environments of LP routines.

Snapshots (N ) 10 20 50 100 500

P (1000 trials) 0.691 0.820 0.958 0.995 1.000
P (10000 trials) 0.665 0.803 0.948 0.992 1.000

Table 1: Sample probability (P ) convergence for correct identifi-
cation by diagonal fitting for thenon-integer arraydNI .

4. SUMMARY

We have demonstrated that manifold ambiguity defined via the lin-
ear dependence of the NLA array manifold (“steering”) vectors
does not necessarily mean that the corresponding scenario is non-
identifiable. The failure of subspace algorithms, such as MUSIC,
to give unambiguous DOA estimates means that these methods
alone are inadequate, and need to be substituted or complemented
by some other techniques capable of manifold ambiguity resolu-
tion. In this paper we have introduced one approach to mani-
fold ambiguity resolution for identifiable uncorrelated Gaussian
sources. This method seeks the best fit amongst the set of esti-
mated spatial covariance lags and source powers for each of the
MUSIC DOA estimates, including the ambiguous ones. This pro-
posed fitting procedure adopts a computationally efficient linear
programming routine and demonstrates an extremely high prob-
ability of correct identification in manifoldly ambiguous scenar-
ios. We have also demonstrated that local nonidentifiability can
occur for partially-augmentable arrays with a superior number of
sources.
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