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ABSTRACT

Recent advances have been made regarding
quadrature receiver I/QQ mismatch calibration. In
particular, Green/Anderson-Sprecher/Pierre present
a nonlinear regression (NLR) -based algorithm that
utilizes a pure sinusoidal test signal for sensor cali-
bration [1]. This paper develops a double side-band
suppressed carrier (DSB-SC) signal model for use with
NLR-based calibration methods. The DSB-SC model
not only provides a useful signal for calibration, it
also demonstrates the model flexibility inherent to
nonlinear regression techniques. Simulations illustrate
the effectiveness of the DSB-SC signal model for the
calibration of 1/Q sensors.

Categories:
5.7: Sig. and Sys. Modeling, 5.5 Parameter Est.

1. INTRODUCTION

In [1], Green/Anderson-Sprecher/Pierre present a non-
linear regression (NLR) -based method to calibrate
gain and phase mismatch between the in-phase (I) and
quadrature (Q) branches of a quadrature receiver. The
method is effective, easy to implement, and provides
excellent techniques for on-line error assessment. Un-
fortunately, [1] only presents a single model: a pure
sinusoidal test signal. The pure sinusoidal model can
be somewhat restrictive, and it does not display the
model flexibility inherent to nonlinear regression tech-
niques. This paper develops another signal model for
NLR calibration: the double side-band suppressed car-
rier (DSB-SC) test signal. Derivation of the DSB-SC
model also demonstrates the model flexibility of the
NLR calibration technique.

It is worthwhile to note that other effec-
tive I/QQ mismatch calibration procedures exist.
Churchill/Ogar/Thompson provide a standard deter-
ministic technique referred to as local test signal in-

jection [2]. Pierre/Fuhrmann furnish a method based
upon quadrature detection to determine relative gain
and phase mismatch [3]. Macleod [4] presents a
Fourier-based wideband calibration technique that, like
[2], uses direct test-signal injection. The method of Lee
[5] is also based on direct injection of calibration sig-
nals.

The NLR calibration techniques in [1] provide sev-
eral advantages over existing methods including modest
model assumptions, accommodation of non-uniformly
sampled or missing calibration data, effective on-line
performance assessment, and model flexibility. Fur-
thermore, the NLR-based techniques calibrate receivers
in normal operating environments. That is, test signals
are transmitted to receivers according to field design —
while direct test signal injection is supported, it is not
necessary.

2. NONLINEAR REGRESSION BASICS

For processes that follow a NLR model, observations
are expressed according to:

Y’I’l:f(Xn713)+€'ﬂ7 (1)

where Y,, is the n'" observed value; f (-) is a nonlin-
ear function of a known predictor vector, X, and an
unknown parameter vector, 3; and &,, is additive, zero-
mean, uncorrelated noise.

The unknown parameter vector, 3, is estimated
using techniques such as steepest descent or Gauss-
Newton. In the Gauss-Newton method, parameter es-
timates are iteratively updated according to:
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where the parenthetical superscript indicates iteration,
T denotes the complex conjugate transpose, ,[Ai(z) is a
length P vector estimate of the unknown parameters,

Y is the length N observation vector, D@ is the N by
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and f @) is the length N estimated response vector with
elements fr(f) =f (Xn,,@(z)). Details are in [1].

In the NLR context, there exist several effective
methods to ascertain estimator performance. Provided

independent, normal errors and a reasonable sample
size, a-level confidence intervals are straightforward:
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where tn_p (1 —a/2) is the (1 —a/2)100 percentile
of the student-¢ distribution with N — P degrees of
freedom.

Resampling techniques, such as the jackknife or the
bootstrap, have no underlying assumptions regarding
sample size or normality of errors, and they provide
effective alternatives to (3). Details for jackknife and
bootstrap inferences are given in [1].
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3. DSB-SC SIGNAL MODEL

Figure 1 illustrates a standard quadrature receiver.
The gain and phase errors are modeled by the im-
pulse response functions h; and hg, for the I and
Q branches respectively. This approach allows er-
rors to be frequency dependent as shown by the
frequency-domain representations of the response func-
tions: Hy(w) = Gy (w)exp(—j¢r(w)) and Hg (w) =
G (w)exp (—jvg (w)). Although the errors are mod-
eled as frequency dependent, it is reasonable to assume
that the gain and phase errors are approximately con-
stant over narrow frequency bands.

The DSB-SC test signal provides a common trans-
mission signal that can be used for NLR-based receiver
calibration. For this model, the receiver is assumed
to be omni-directional. Essentially, DSB-SC involves a
sinusoidal message signal of frequency w,, modulated
by a sinusoidal carrier of frequency w.. Provided the
local oscillator shown in Figure 1 is set to the carrier
frequency, the message signal is reduced to baseband.
In a manner similar to [1], the gain and phase terms
are grouped together and the receiver output is given
as:

y(t 1, Ig) =
It (A (win) cos () cos (wint + a (wm))) +
T (B () sin () c05 (wmt + 3 () 1 = (8), (1)

where additive system noise is designated by € (¢) and
each I serves as an indicator function. The indicator
functions provide a way to “stack” observations from
different branches and different sources. In this case,

Ir = 1 and Ip = 0 when representing data from the
in-phase branch; I; = 0 and Iy = 1 when representing
data from the quadrature branch.

In (4), the grouped gain parameters, A (w,,) and
B (wy,), include contributions from the unknown test
signal gain as well as the unknown gains of each individ-
ual branch. Similarly, the grouped parameters, a (wy, )
and 3 (wyy, ), represent phase contributions from the test
signal as well as the receiver. Relative phase and gain
mismatch error are defined according to A (w) /B (w)
and a (w)— B (w), respectively. For the sake of simplic-
ity, local oscillator deviations are not included in this
model. Allowance can be made for local oscillator er-
rors, but the errors cannot simply be grouped together;
the model is thus more complex.

An unknown parameter v is also introduced by
this model, and it presents difficulties when using NLR
methods. First, since ¢ is shared in both branches, in-
dicator functions are required to couple the equations
together. Second, observations from (4) alone are in-
sufficient to estimate the unknown parameters. The
system is rank deficient and thus possesses an infinite
number of possible solutions.

One way to remedy this situation is to collect data
from two independent source locations. Observations
can then be expressed according to:

y(t;Ir,Ig,Is1,1s2) =
IsiI7 (A (wp)cos (g1 ) cos (wmt + a (Wi,
Is11g (B (wm)sin (¢s1)
IsoIy (A (wh) cos (Ys2)
Isolg (B (wm)sin (¢g2) cos (wmt + B (wm

£ (1), (5)

where the subscripts S1 and 52 identify which source is
being used. Separate indicator functions are required
to distinguish data from each source location. Addi-
tionally, ¥ depends on source location and the param-
eter v appears to allow for phase mismatch between
sources. Although the addition of a second source lo-
cation complicates the nonlinear model, the system is
now full rank and estimates of the parameters can be
obtained.

The gain and phase parameters as well as ¢ af-
fect the SNR of the system, and the SNR is rarely the
same between branches. Because it is a function of
unknowns, SNR is itself unknown. Note that certain
values of ¢ seriously degrade the SNR for a particular
branch when using model (5). This reduces estimator
efficiency for parameters associated with that branch.
As an extreme example, if ¢ is equal to zero, no mean-
ingful estimate of the Q branch parameters can be ob-
tained. Estimator performance measures will indicate



when %) is unacceptable. Recommendations in [1] re-
garding system sampling should be followed as well to
ensure good parameter estimates.

The models given in (4) and (5) are somewhat gen-
eralized. Some DSB-SC systems, such as those which
utilize a Costas loop to lock onto the carrier frequency,
may require model modifications to be entirely accu-
rate. When using the DSB-SC model in (4), phase es-
timates are modulo 180 degrees. This is a consequence
of the m-periodicity of the cosine function. The conse-
quence, of course, is a potential 180 ambiguity in the
estimate of the receiver’s phase mismatch. For single
sensor systems, this ambiguity generally has no detri-
mental effects on system performance. In sensor array
systems, iterative inter-element calibration techniques
are required. Details regarding inter-element calibra-
tion, along with appropriate references, are in [1].

4, SIMULATIONS AND RESULTS

Table 1 provides the simulation results of NLR cali-
bration that utilizes the double side-band suppressed
carrier model of (5) with independent, normally dis-
tributed errors (o2 = 0.01). For this simulation, a rel-
atively small sample size of 80, or 20 observations per
branch and source, is used. Note also, with this model
some nuisance parameters, such as v and the ¢’s, must
be estimated in order to estimate the gain and phase

mismatch of the receiver.

The parameter estimates empirically appear to be
unbiased or nearly so, and the performance measures
based on (3), jackknife methods, and the bootstrap all
provide comparable results. As previously discussed,
some values of ¢/ degrade the SNR of one branch more
than the other branch. This phenomenon is empha-
sized in Table 1 by realizing that the standard devi-
ations and confidence intervals of the parameter esti-
mates between branches differ significantly.

Suppose system specifications require gain calibra-
tion within one-percent of the true values. As evi-
denced by Table 1, a sample consisting of 20 obser-
vations per branch per source is insufficient. Table
2 illustrates the effect of varying sample size on esti-
mator performance. Clearly, the case of 2000 samples
per branch per source, for a total of 8000 observations,
results in estimates that are within tolerance require-
ments. By monitoring estimates using large sample,
jackknife, or bootstrap methods, it is easy to verify
whether or not estimates meet system requirements.

5. CONCLUSIONS

A DSB-SC test signal was developed for NLR-based
calibration of gain and phase mismatch in 1/Q re-
ceivers. The DSB-SC model not only provides a use-
ful, effective calibration signal, but it also helps illus-
trate the model flexibility inherent to NLR-based meth-
ods. Simulations illustrate DSB-SC model effectiveness
for receiver calibration. Simulations also demonstrate
the use of large-sample, jackknife, and bootstrap tech-
niques to monitor estimator performance.
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Figure 1: T/Q Receiver with Gain and Phase Imbalances
True Est. EQ. (3) Jackknife Bootstrap
S.D. C.I. BIAS S.D. C.I. BIAS S.D. C.I.
1.0599 [ 1.1234 || 0.0977 | 0.9287 || 0.0102 | 0.0872 | 0.9599 | 0.0096 | 0.0883 | 0.9571
1.3181 1.3073 1.3089
1.1041 [ 1.0970 || 0.0403 | 1.0167 || 0.0025 | 0.0372 | 1.0254 | 0.0026 | 0.0368 | 1.0263
1.1774 1.1736 1.1729
0.1622 || 0.1061 || 0.0577 | -0.0089 || 0.0006 | 0.0650 [ -0.0228 || 0.0012 | 0.0615 [ -0.0152
0.2211 0.2362 0.2298
2.6450 || 2.6503 || 0.0308 | 2.5895 || 0.0002 | 0.0427 | 2.5655 || 0.0010 | 0.0412 | 2.5692
2.7122 2.7355 2.7334

Table 1: DSB-SC Test Signal, N = 80, and Measures of Performance

True N =380 N =800 N = 8000
Est. C.L Est. C.L Est. C.L

A || 1.0599 || 1.1234 | 0.9287 || 1.0919 | 1.0269 (| 1.0511 | 1.0341
1.3181 1.1569 1.0682

B || 1.1041 || 1.0970 | 1.0167 || 1.0750 | 1.0489 || 1.1105 | 1.1026
11774 1.1011 1.1184

a || 0.1622 [ 0.1061 | -0.0089 [ 0.1751 | 0.1396 || 0.1698 | 0.1591
0.2211 0.2106 0.1305

8 || 2.6450 |[ 2.6503 | 2.5895 || 2.6410 | 2.6218 || 2.6476 | 2.6420
2.7122 2.6602 2.6533

Table 2: DSB-SC Performance, Equation (3), and Varying Sample Size




