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ABSTRACT

In this paper, a novel minimumnoise structure is intro-
duced for ladder-based biorthogonal �lter banks. The
proposed MInimum Noise LAdder-based Biorthogor-
nal (MINLAB) coder ensures that the noise gain of
the quantizers is unity, even though the system is not
orthonormal. The coding gain of the optimal MIN-
LAB coder is always greater than unity. For both the
AR(1) and MA(1) processes, the MINLAB coder with
2 taps outperforms the optimal orthonormal coders of
any number of taps. In addition to its superior cod-
ing performance, the optimal biorthogonal coder has a
very low design and implementational cost. Moreover
the proposed coder enjoys many advantages that make
it an attractive choice for lossy/lossless data compres-
sion.

1. INTRODUCTION

Recently there has been considerably interest in ap-
plying the ladder structure to data compression [1]{
[4]. Fig. 1 shows a simple two-channel �lter bank (FB)
that uses only one ladder. In the absence of quantiz-
ers, the FB has perfect reconstruction, regardless of
the choice of P (z). The implementation and design
of the biorthogonal system involve only P (z), hence
its complexity is very low. Even though the system is
simple, its coding performance is comparable to that
of orthonormal coders.
The ladder-based FB has found applications in both

the lossless and lossy coding of images. In [1], the
authors apply the ladder structure for the high bit
rate lossy/lossless coding of medical images. In [2],
the S+P-transform was introduced and it was demon-
strated that in the application of both lossy and loss-
less image coding, the S+P transform produces excel-
lent compression results. In [3], the optimal predictor
with certain zero constraint is used as P (z). In [4],
the authors proposed a ladder structure with integer
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to integer transform for the lossless coding of images.
However all the ladder-based coders considered above
do not have the unity noise gain property. Therefore
in the case of lossy compression, like most biorthogonal
coders, the coding gain of the ladder structure FB is
not guaranteed to be greater than unity.
On the other hand, the class of orthonormal FB is

known to have coding gain CG � 1. There has been a
lot of interest in �nding the optimal orthonormal FB
that yields a maximum coding gain for a given input
statistics [5], [6]. The theory of optimal orthonormal
coder is closely related to the principle component FB
and its solution is given in [5]. The optimal FIR case
is solved in [6].
In this paper, a minimum noise structure is intro-

duced for the ladder-based FBs shown in Fig. 1. The
proposed MINLAB coder has the unity noise gain prop-
erty. The coding gain of the optimal MINLAB coder
is equal to the square root of the prediction gain and
hence it is guaranteed to be greater than or equal to
unity. The optimal biorthogonal coder can be solved
using Levinson recursion. For both AR(1) and MA(1)
processes, the proposed biorthogonal coder with 2 taps
has a higher coding gain than any optimal orthonor-
mal FB (with any number of taps). Many results in
this paper will be stated without proof. The readers
are refered to [7] for details.

2. TRADITIONAL SUBBAND CODER

Throughout this paper, we make some commonly used
assumptions on the quantizers. Assume that the quan-
tizers are scalar uniform quantizers and can be mod-
elled as an additive noise source as indicated by the
dashed line in Fig. 1. We assume that for a bi-bit quan-
tizer, the variance of quantization noise qi(n) satis�es
�2qi = c 2�2bi�2xi :

In a traditional subband coder, quantizers Qi are
placed directly after the subband signals xi(n) as shown
in Fig. 1. The output noise qout(n) contains contribu-
tion from both q0(n) and q1(n). Due to the upsampler,
the output noise is not a WSS process. To quantify the
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Figure 1: Conventional subband coder using ladder.

error, we use the average noise variance. Assume that
q1(n) is white and uncorrelated with q0(n). Then one
can show that the average noise variance is

�2qout =
1

2
�2q0 +

1

2
�2q1(1 + Ep);

where Ep =
R
2�

0
jP (ej!)j2 d!

2� is the energy of the �lter
P (z) and �2qi is the variance of the quantization noise
qi(n). The noise gain for q0(n) is unity while q1(n) is
ampli�ed by 1+Ep. Due to this noise ampli�cation, it
is not guaranteed that the coding gain CG � 1.

3. THE MINLAB CODER

In the traditional subband coder shown in Fig. 1, the
input to P (z) at the analysis end is x(2n � 1), while
the input to P (z) at the synthesis end is its quantized
version, bx(2n � 1). That means, in the reconstruction
process q1(n) is added to the top branch through the
�lter P (z). To avoid this, we can move the quantizer
Q1 to the left, as shown in Fig. 2. This has the dramatic
e�ect of making the noise gain unity. We will refer to
Fig. 2 as the MInimum Noise LAdder-based Biorthogo-
nal (MINLAB) coder. To explain the unity noise gain
property of this structure, note that from Fig. 2, we
have the following relations:

x0(n) = x(2n)� v0(n)bx0(n) = x0(n) + q0(n)

y0(n) = bx0(n) + v0(n):

From the above equations and Fig. 2, we can conclude
that the errors on the top and bottom branches are
respectively

y0(n) � x(2n) = q0(n); y1(n) � x(2n� 1) = q1(n):

Therefore the average variance of output error in the
MINLAB coder is given by �2qout = 0:5(�2q0+�2q1): That
means, the noise gain is always one even though the FB
is never orthonormal. Using our noise model, �2qout can
be rewritten as:

�2qout = 0:5c
�
2�2b0�2x0 + 2�2b1�2x

�
;

where we have used the fact that �2x1 = �2x. Applying
the arithmetic mean geometric mean inequality to the
above equation, we get

�2qout � c 2�2b
h
�2x0�

2

x

i1=2
;

with equality if and only if the bits are allocated as:

bi = b+
1

2
log�2xi �

1

2
log
h
�2x0�

2

x

i1=2
; (1)

where b = 0:5(b0 + b1) is the average bit rate. From
the above derivation, we see that the average output
noise variance �2qout is minimized when the two quan-
tizers have the same noise variance. The noise vari-
ances �2qi and the quantization stepsize 4i are related
as �2qi = const � 42

i . The MINLAB coder is optimal
if the stepsizes of the quantizers are equal. Therefore
we conclude that the equal stepsize rule is optimal for
the MINLAB. Entropy coding can be applied to fur-
ther compress the quantizer output. If we de�ne the
coding gain of the coder as the ratio of the error vari-
ance in PCM over that of the coder, �2qout. Then under
the optimal bit allocation (1), the coding gain can be
written as:

CG =
�2x

[�2x0�
2
x]
1=2

=

s
�2x
�2x0

: (2)

Optimal P (z)
From (2), the coding gain CG is maximized if �2x0

is minimized. The optimal solution of P (z) such that
�2x0 is minimized can be obtained from the well-known
linear prediction theory. To see this, let P (z) be an

FIR �lter of the form P (z) =
PN�1

n=�N p(n)z�n. Then
the optimal solution is precisely the optimal predictor
of x(2n) based on the observations of x(2n� 2k � 1),
for �N � k < N . Noncausal predictor can be used
here since we are predicting the even samples from the
odd samples. A causal implementation of such a sys-
tem is always possible by inserting enough delays at
appropriate places in Fig. 2. Let x(n) be a real-valued
wide sense stationary process with autocorrelation co-
e�cients r(k). Then using the orthogonality principle,
the optimal p(n) that minimizes �2x0 is the solution of
the following equation

Rxp = r; (3)

where p = [p(�N ) p(�N + 1) : : : p(N � 1)]T , r =
[r(2N � 1) r(2N � 3) : : : r(1) r(1) : : : r(2N � 1)]T ,
and the matrix Rx is

Rx =

0BBB@
r(0) r(2) � � � r(4N � 2)
r(2) r(0) � � � r(4N � 4)
...

...
. . .

...
r(4N � 2) r(4N � 4) � � � r(0)

1CCCA :
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Figure 2: The MINLAB coder.

Since Rx is the autocorrelation matrix of the signal
x(2n � 1), it is positive de�nite. Therefore the above
normal equation can be solved in O(N2) by using the
Levinson fast algorithm. The optimal predictor p is
given by popt = R�1

x r: And the minimum achievable
variance �2x0;min is given by

E = r(0)� rTR�1
x r = r(0)�

N�1X
k=�N

popt(k)r(2k + 1):

And the prediction gain is Gp = �2x=�
2

x0;min
= �2x=E �

1: The prediction gain is unity if and only if all the
observations are uncorrelated to the target of predic-
tion x(2n). Using (2), the maximum coding gain of the
MINLAB coder is CGmax =

p
Gp.

Note that in the derivation of (3), we have assumed
that the autocorrelation matrix of the quantized obser-
vations bx(2n � 1) is very close to that of the original
observation. This assumption is valid only when the
bit rate is high so that the quantization noise variance
is small. In the case of low bit rate coding, the auto-
correlation matrix of bx(2n � 1) can di�er signi�cantly
from that of x(2n � 1). This can result in a substan-
tial loss in coding performance. In [7], the minimum
mean-square-error (MMSE) predictor is derived.

Linear phase property: The optimal predictor popt =
R�1
x r has linear phase, i.e., popt(n) = popt(�n� 1). To

see this, note that the matrixRx satis�es JRxJ = Rx,
where J is the reversal matrix. Since the vector r is
symmetric, we have Jr = r. Using these properties, we
can rewrite (3) as Rx(Jp) = r: Comparing this equa-
tion and (3), we conclude that Jpopt = popt. Hence
P (z) has linear phase.

4. MERITS OF MINLAB CODER

The MINLAB coder in Fig. 2 enjoys many advantages
[7]. In the following, we list some of them:

1. Low design and implementational cost: The design
of the optimal MINLAB coder is simple. Unlike

the optimal orthonormal coder, no constrained op-
timization and no spectral factorization is needed.
Optimal MINLAB coder can be obtained by us-
ing Levinson algorithm. To implement the anal-
ysis or synthesis bank, we need only one �lter
P (z). Moreover the optimalP (z) has linear-phase.
Therefore the complexity of the biorthogonal coder
is roughly a quarter of that of an orthonormal
coder of the same order.

2. Low delay: It is known that the delay of an or-
thonormal coder is proportional to the �lter order.
The longer the �lters are, the larger the system de-
lay is. In the MINLAB coder, if P (z) is a causal
�lter, then the system delay is only one sample
regardless of the �lter order. As the prediction
gain increases with �lter order, so is the coding
gain. Therefore we can improve the performance
of such a biorthogonal coder without introducing
extra system delay.

3. Lossy/lossless compression: Let the input x(n) be
a discrete amplitude signal with stepsize 4x. For
many applications, the inputs are integers. Sup-
pose the output of P (z) is quantized using a quan-
tizer Qp. Then the MINLAB coder can be modi-
�ed for lossless compression as follows:

(a) Set the stepsize of Qp be an integer multiple
of4x. That is,4p = n4x for some integer n.
Normally n = 1. And any type of quantizer
(round o� or truncation or ceiling) can be
used as Qp.

(b) Set the stepsizes of the subband quantizers as
40 = 41 = 4x. And use entropy coding to
encode the outputs of Q0 and Q1.

Therefore by varying the stepsizes of the quantiz-
ers, we can get both lossy and lossless compression
with the same structure.

4. Incorporation of EZW algorithm: It can be shown
[7] that the MINLAB coder in Fig. 2 can be gener-
alized to obtain a tree structure MINLAB coder.
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Such a system continues to enjoy all of the prop-
erties listed above. Using this wavelet-type MIN-
LAB coder, the embedded zerotree wavelet (EZW)
algorithm can be applied.

Example 1. AR(1) Inputs: Let the input be an AR(1)
process with r(k) = �jkj for 0 < � < 1. For this AR(1)
process, we compare the performance of the following
various coders:

1. Let P (z) = p(�1)z+p(0). From the normal equa-
tion (3), we get the optimal predictor as p(0) =
p(�1) = �=(1 + �2). The optimal coding gain
has the closed form expression CGMINLAB(2) =p
(1 + �2)=(1� �2), where the index 2 indicates

that the predictor has 2 taps. But in this case
only 1 multiplier is needed.

2. Take P (z) = p(0). The optimal predictor is simply
P (z) = � and the coding gain is CGMINLAB(1) =

1=
p
1� �2:

3. Consider the coding gain for optimal orthonormal
coders with in�nite taps and 4 taps. It was shown
in [5]{[6] that the coding gains are respectively

CGortho(1) =
�p

1� (16=�2)(tan�1 �)2
��1

and

CGortho(4) =
p
(1 + 1=3�2)=(1� �2):

4. The DPCM of order one is optimal in this case as
the input is an AR(1) process. Its coding gain is
given by CGDPCM (1) = 1=(1� �2):

5. Suppose that we use the traditional biorthogo-
nal coder in Fig. 1. Then it can be shown
that the maximum achievable coding gain for
a two-tap �lter P (z) is given by CGtradit(2) =p
(1 + �2)=(1� �2)

p
1=(1 + Ep); where Ep =

2�2=(1 + �2)2.

These gains are shown in Fig. 3. It is clear from
the �gure that CGDPCM (1) > CGMINLAB(2) >
CGortho(1) > CGortho(4) > CGMINLAB(1) for all pos-
sible �. Therefore we see that for AR(1) process, the
optimal MINLAB coder with 2 taps (1 multiplier) out-
performs the optimal orthonormal coder with in�nite
number of taps.

Example 2. MA(1) Inputs: Let the input be an MA(1)
process with r(0) = 1, r(�1) = � for 0 < � < 0:5, and
r(k) = 0 for all the other k. One can show [7] that
there are closed form formulas for the coding gain of
the �ve cases de�ned in Example 1. All these gains
are shown in Fig. 4. The MINLAB coder with 2 taps
outperforms all the other coders, including the DPCM
and orthonormal coders.
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Figure 3: Coding gain for AR(1) process.
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Figure 4: Coding gain for MA(1) process.
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