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ABSTRACT

We present two adaptive cross-product algorithms for track-
ing the direction to a moving source using an electromag-
netic vector sensor. The �rst is a cross-product algorithm
with a forgetting factor, for which we analyze the perfor-
mance and derive an asymptotic expression of the variance
of angular estimation error. We �nd the optimal forgetting
factor that minimizes this variance. The second is a Kalman
�lter combined with the cross-product algorithm, which is
applicable when the angular acceleration of the source is
approximately constant.

1. INTRODUCTION

In this paper we develop two adaptive cross-product al-
gorithms for tracking the direction to an electromagnetic
(EM) source. These algorithms use measurements from an
EM vector sensor (a device measuring the complete 6 com-
ponents of an EM �eld at a single point). They extend the
original method for stationary sources in [1], [2].
Inspired by the Poynting theorem, the algorithm in [1],

[2] forms the cross-product of the electric �eld vector with
the complex conjugate of the magnetic �eld vector and av-
erages over time. The vector result is normalized to have
unit length, yielding the estimate of the unit vector in the
source direction. The resulting cross-product algorithm has
no scalar-sensor counterpart. Its principal advantages and
capabilities are the following:

� Very low computational complexity since no cost func-
tion minimization is needed.

� Ability to easily and equally work with sources of var-
ious types, such as wideband or narrowband signals,
polarized or unpolarized.

The ability to work with wideband sources with low com-
putational complexity is because the steering vector is not
a function of the frequency. Other advantages that are in-
herited by the properties of the vector sensor are:
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� Only one EM vector sensor is needed to track the
source in 3D space, while occupying very little space.

� No need for sensor location calibration and time syn-
chronization among di�erent components, since no
time delays are used.

� Isotropic response.

The paper is organized as follows. In Section 2 we intro-
duce and analyze the simplest form of the adaptive cross-
product algorithm, in which a forgetting factor is used to
discount old data measurements in the averaging. For its
performance analysis, a most di�cult tracking scenario is
considered where the signal angle of arrival has indepen-
dent random Gaussian distributed increments. In Section
3 we consider a di�erent scenario, where it is assumed that
the angular velocity or angular acceleration of the angle of
arrival is approximately constant. This is a more realis-
tic setup and the tracking can be performed with a higher
accuracy using a Kalman �lter combined with the cross-
product method. In [3], we illustrate the performance of
the proposed algorithms via numerical examples. Section 5
summarizes our conclusions.

2. ANALYSIS

The cross-product algorithm for estimating the direction to
a far-�eld source is based on the fact that in an electromag-
netic plane wave the instantaneous vectors of the electric
and magnetic �elds and the direction vector of wave prop-
agation are mutually orthogonal. Thus, if the former two
vectors are measured by a 6-component vector sensor, the
direction of the wave can be found by computing the cross
product of these vectors.
Since in general the measurements are noisy and the sig-

nal is non-stationary, we propose to estimate the instanta-
neous vector of direction of the wave as a weighted average
of the sequence of the individual cross products using an
exponential window with a forgetting factor �,
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ûN = ŝN=kŝNk : (2.2)



In (2.1), y
E
(t) is the 3D electric �eld measurement and

�y
H
(t) the complex conjugate of the 3D magnetic �eld mea-

surement, in phasor (complex envelope) form. We analyze,
along the following lines, the performance of the algorithm
in (2.1), (2.2) for tracking a nonstationary target.
Let

ẑt = Refy
E
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H
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and let eE(t) and eH(t) be errors (an additive noise) that
enter the measurements of the true electric and magnetic
�elds, y

E
(t) and y

H
(t). As in [2] we assume that these

errors are zero mean, independent each of other and of the
signal itself, and have the following covariances,
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In (2.5), the superscript \T" denotes the transpose and I3
the 3D identity matrix. It is shown in [2] that ẑt can be
written as

ẑt = zt + �zt (2.6)

where

zt = �2s � ut (2.7)

and �2s = E[js(t)j2] is the variance of the complex enve-
lope of the (scalar) transmitted signal s(t) (cf. eqn's (2.13)
and (4.24) in [2]), and f�ztg is a sequence of pairwise in-
dependent zero-mean random vectors. Note that the signal
variance �2s may also depend on time, but in our �rst-order
approximation this will not a�ect the analysis. Further it
is assumed that the signal envelope s(t) is statistically in-
dependent of eE(t) and eH(t) and has �nite fourth-order
moments.
The covariance matrix of �zt is computed on the bottom

of [2, p. 396]. This matrix depends on t through the instan-
taneous signal parameters, in particular the vector ut and
also the electromagnetic wave polarization. In this paper
we need only the following expression, which is independent
of these parameters, see [2, p. 396],
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Since for any matrices A;B with compatible dimensions it
holds that tr(AB) = tr(BA) and (I�utuTt )2 = (I�utuTt ),
it also holds that
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Note that the expression in (2.9) is the trace of the covari-

ance matrix of ~�zt
4
= (I�utuTt )�zt. The relation (2.9) will

be used in the sequel.
Let � denote the forward di�erence operator, e.g.

�ut = ut+1 � ut ; (2.10)

and let

~�ut = (I3 � utu
T

t )�ut : (2.11)

For analyzing the tracking, we shall consider a worst case
model of the evolution of ut,

ut+1 =
ut +nt

kut +ntk (2.12)

where fntg are independent samples from the distribution
N (0; �2nI3). Thus, the source moves randomly and equally
likely in all directions from its position at the previous time
sample. For use in the later analysis we shall derive an ap-
proximate expression for the trace of the covariance matrix
of ~�ut. Using the Taylor series expansion of (2.12) we get

ut+1 = ut + [I3 � utu
T

t ]nt +OUB(kntk2) (2.13)
where OUB(kntk2) stands for a remainder which is uni-
formly bounded in norm by a constant times kntk2 both
for all kntk � 1=2 and for all kntk > 1=2 (see proof of
Lemma H.2 in [2]). Hence
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Let � denote the estimation error operator, e.g.

�ut = ût � ut (2.15)

�st = ŝt � zt (2.16)

where we assume that ŝt in (2.1) is an estimate of the quan-
tity zt in (2.7) and put

~�st = (I3 � utu
T

t )�st : (2.17)

Then using (2.2), (2.7), and a series expansion similar to
those in (2.12) and (2.13) we obtain
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The angular estimation error can be approximated by

�'t = 2arcsin(kût � utk=2) = k�utk+OUB(k�utk3) :(2.19)
Using (2.18), (2.19) and the fact that the absolute value of
�'t is bounded by a constant (equal to �) we get

�'t = k~�stk��2s +OUB(k�stk2��4s ) (2.20)

[�'t]
2 = k~�stk2��4s +OUB(k�stk3��6s ) : (2.21)

Hence, provided that the errors eE, eH and �st have �nite
third-order moments, it holds

var[�'t] = trfcov[~�st]g��4s +O(E[k~�stk3]��6s ) : (2.22)



Finally note that ŝt in (2.1) can be written recursively
as

ŝt = �ŝt�1 + (1� �)ẑt : (2.23)

The error of ŝt is

�st = ŝt � zt = �ŝt�1 + (1� �)ẑt � zt

= �(zt�1 + �st�1) + (1� �)(zt + �zt)� zt

= ��st�1 + (1� �)�zt � ��zt : (2.24)

Multiplying the last equality by I3 � utu
T
t and neglecting

higher than �rst order error terms we get

~�st = �~�st�1 + (1� �)~�zt � � ~�zt : (2.25)

Thus, the error sequence f~�stg can be obtained by the fol-

lowing linear �ltering of the sequencies f~�ztg and f ~�ztg,
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where q�1 is the backward time shift operator.
Then, in the limit N !1 it holds that
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where the integration proceeds along the unit circle in the com-
plex plane. After a straightforward calculation we get
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Now, from (2.7) it follows that
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Substituting (2.29), (2.27), (2.14) and (2.9) into (2.22) we
obtain
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We use the above result to compute an optimal value
of the forgetting factor. If the remainder term in (2.30) is
neglected, the leading term in the equation is minimized for
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The Taylor series expansion of (2.32) gives
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This optimal choice of � is a trade-o� between system re-
sponsiveness and noise sensitivity. The source position uc-
tuates with amplitude that increases with �n, so when �2n
is large we expect a smaller forgetting factor to yield bet-
ter performance. A smaller forgetting factor lets old data
samples be \forgotten" more quickly. But as with other
tracking systems, a responsive system is generally more sus-
ceptible to measurement noise, since time averages are gen-
erally short, while a noise tolerant system is not able to
follow rapid movement of the source. Hence a trade-o� be-
tween these conicting performance measures is needed and
is solved by �0.

3. TRACKING OF DRIFTING TARGETS

In cases when the targets are subject to a slow and persis-
tent drift or a slow and persistent acceleration, the above
algorithm exhibits an estimation delay. This delay can be
eliminated by an algorithm which, in addition to the instan-
taneous direction vector, estimates also the angular velocity
and acceleration of the target. The algorithm proposed in
this section is based on a modi�ed Kalman �lter and is
inspired by a similar one in [4].
Let _ut and �ut be the bearing velocity and acceleration,

respectively, i.e. the �rst and the second time derivative of
the direction vector ut. Since ut has a unit norm, _ut and
�ut are orthogonal to this vector.
Introduce the notation

�t =

"
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_ut
�ut

#
(3.35)

and the function
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which is the projection mapping into the set of properly nor-
malized vectors �. Speci�cally, The function orthnorm(�)
is used to assure that the vector of direction (on top) has
a unit norm and that the velocity and acceleration vectors
(below) are orthogonal to it.
Assume that time evolution of ut is governed by the equa-

tion

�t+1 = orthnorm(F�t + wt) (3.37)

where
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T denotes the sampling interval (in seconds), fwtg is a ran-
dom process noise term that accounts for random pertur-
bations about the constant acceleration trajectories. Note
that the model in (3.37) without the operation of orthonor-
malization is generally used in discussions of tracking prob-
lems and also in [4]. In this model, the acceleration is as-
sumed to be constant during the sampling interval and may
di�er from one interval to another through random pertur-
bations.

The observation is then the real part of the EM cross
product:

ẑt = �2s � ut + �zt = H�t + �zt (3.39)

where

H = �2s [I3; 03�6] ; (3.40)

which is of dimension 3 � 9 and 03�6 is a 3 � 6 dimension
matrix with 0 entries. Assume that covariance matrices
of wt and of �zt, denoted C�w and C�z, respectively, are
known. Tracking of the state vector �t can be solved by the
following modi�ed Kalman �lter,

�̂tjt = orthnorm
�
�̂tjt�1 + Lt[ẑt �H�̂tjt�1]

�
(3.41)

�̂t+1jt = orthnorm
�
F �̂tjt
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T
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T +C�z

��1
(3.43)

�tjt = (I9 � LtH)�tjt�1 (3.44)

�t+1jt = F�tjtF
T +Cw : (3.45)

This �lter is obtained as a modi�cation of a Kalman �lter
for the model in (3.37){(3.39) excluding the orthonormal-
ization in (3.37). Simulations show that the proposed �lter
works quite well even if the theoretical covariance matrices
Cw and C�z are replaced by identity matrices multiplied
by appropriately chosen scalar factors.

LetCw = �2wI9 andC�z = �2zI3. Note from (3.43){(3.45)
that the asymptotic Kalman gain Lt for t ! 1 does not
depend on the variances �2w and �2z themselves but on their
ratio � = �2w=�

2
z . Thus, it is possible to put �2z = 1 and

control the asymptotic performance of the �lter by a single
parameter �2w. Note, however, that if Cw and C�z are not
selected realistically but as ad hoc constants, then �tjt and
�t+1jt in (3.44) and (3.45) also lose the interpretations of
mean-square estimation errors.

It is worth noting that if all three of matrices Cw, C�z

and �1j0 are taken as multiples of the identity matrix, the
Kalman gain is identical for all three components of vectors
of the direction, velocity and acceleration. Hence it su�ces
to compute a gain vector according to (3.43){(3.45) for only
one of the components, so that e.g. the matrix to be inverted
in (3.43) will have the size of only 3� 3 instead of 9� 9.

The price for the improved performance of the algorithm
presented in this section, compared with those proposed in
the previous section in scenarios with a persistent drift, is
a higher computational complexity and also a longer tran-
sients at the beginning of the tracking, until the correct
wave direction, velocity and acceleration are approached.

4. CONCLUDING REMARKS

We discussed two algorithms for tracking the direction to a
moving source, using data from an EM vector sensor. We
analyzed the performance of the cross-product algorithm
with a forgetting factor, and computed an asymptotic ex-
pression of its variance of angular estimation error. This ex-
pression was used to �nd the optimal forgetting factor that
minimizes the error variance, as a function of the source
dynamics and sensor noise variances. The main advantage
of this algorithm is in its computational e�ciency. We then
presented a Kalman iter combined with the cross-product
algorithm, which is applicable when the angular accelera-
tion of the source is approximately constant. This method
needs more computations than the cross-product algorithm,
but is more accurate after convergence. In [3] we develop
a third algorithm of multiple forgetting factors type, and
uses a weighted average of the outputs of cross-product al-
gorithms. It has a self tuning ability which is useful when no
a priori knowledge of the source dynamics is available, but
requires more computations then the single cross-product
algorithm. We also present numerical examples demon-
strating the performance of the 3 algorithms in di�erent
scenarios.
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