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ABSTRACT

We present two adaptive cross-product algorithms for track-
ing the direction to a moving source using an electromag-
netic vector sensor. The first is a cross-product algorithm
with a forgetting factor, for which we analyze the perfor-
mance and derive an asymptotic expression of the variance
of angular estimation error. We find the optimal forgetting
factor that minimizes this variance. The second is a Kalman
filter combined with the cross-product algorithm, which is
applicable when the angular acceleration of the source is
approximately constant.

1. INTRODUCTION

In this paper we develop two adaptive cross-product al-
gorithms for tracking the direction to an electromagnetic
(EM) source. These algorithms use measurements from an
EM vector sensor (a device measuring the complete 6 com-
ponents of an EM field at a single point). They extend the
original method for stationary sources in [1], [2].

Inspired by the Poynting theorem, the algorithm in [1],
[2] forms the cross-product of the electric field vector with
the complex conjugate of the magnetic field vector and av-
erages over time. The vector result is normalized to have
unit length, yielding the estimate of the unit vector in the
source direction. The resulting cross-product algorithm has
no scalar-sensor counterpart. Its principal advantages and
capabilities are the following:

e Very low computational complexity since no cost func-
tion minimization is needed.

e Ability to easily and equally work with sources of var-
ious types, such as wideband or narrowband signals,
polarized or unpolarized.

The ability to work with wideband sources with low com-
putational complexity is because the steering vector is not
a function of the frequency. Other advantages that are in-
herited by the properties of the vector sensor are:
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e Only one EM vector sensor is needed to track the
source in 3D space, while occupying very little space.

e No need for sensor location calibration and time syn-
chronization among different components, since no
time delays are used.

e Isotropic response.

The paper is organized as follows. In Section 2 we intro-
duce and analyze the simplest form of the adaptive cross-
product algorithm, in which a forgetting factor is used to
discount old data measurements in the averaging. For its
performance analysis, a most difficult tracking scenario is
considered where the signal angle of arrival has indepen-
dent random Gaussian distributed increments. In Section
3 we consider a different scenario, where it is assumed that
the angular velocity or angular acceleration of the angle of
arrival is approximately constant. This is a more realis-
tic setup and the tracking can be performed with a higher
accuracy using a Kalman filter combined with the cross-
product method. In [3], we illustrate the performance of
the proposed algorithms via numerical examples. Section 5
summarizes our conclusions.

2. ANALYSIS

The cross-product algorithm for estimating the direction to
a far-field source is based on the fact that in an electromag-
netic plane wave the instantaneous vectors of the electric
and magnetic fields and the direction vector of wave prop-
agation are mutually orthogonal. Thus, if the former two
vectors are measured by a 6-component vector sensor, the
direction of the wave can be found by computing the cross
product of these vectors.

Since in general the measurements are noisy and the sig-
nal is non-stationary, we propose to estimate the instanta-
neous vector of direction of the wave as a weighted average
of the sequence of the individual cross products using an
exponential window with a forgetting factor A,

S = s N Relwelt) X a0, (2)
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In (2.1), yg(t) is the 3D electric field measurement and
Y (t) the complex conjugate of the 3D magnetic field mea-
surement, in phasor (complex envelope) form. We analyze,
along the following lines, the performance of the algorithm
in (2.1), (2.2) for tracking a nonstationary target.

Let

z: = Re{yx(t) x yu()},

and let er(t) and eu(t) be errors (an additive noise) that
enter the measurements of the true electric and magnetic
fields, y4(t) and y,(t). As in [2] we assume that these
errors are zero mean, independent each of other and of the
signal itself, and have the following covariances,

t=0,1,...,N (2.3)

E[?H(fg)} [er(s),en(s)] = {03013 UIQ{OIJ (2.4)
E {zzgg] lex(s),en(s)] = 0 (for all tand s). (2.5)

In (2.5), the superscript “I"” denotes the transpose and I3
the 3D identity matrix. It is shown in [2] that 2; can be
written as

Zi =2z + 0z (2.6)
where

2z = 052 - (2.7)
and o2 = E[|s(t)|*] is the variance of the complex enve-

lope of the (scalar) transmitted signal s(t) (cf. eqn’s (2.13)
and (4.24) in [2]), and {dz:} is a sequence of pairwise in-
dependent zero-mean random vectors. Note that the signal
variance o2 may also depend on time, but in our first-order
approximation this will not affect the analysis. Further it
is assumed that the signal envelope s(t) is statistically in-
dependent of ex(t) and ewx(t) and has finite fourth-order
moments.

The covariance matrix of dz; is computed on the bottom
of [2, p. 396]. This matrix depends on ¢ through the instan-
taneous signal parameters, in particular the vector uw; and
also the electromagnetic wave polarization. In this paper
we need only the following expression, which is independent
of these parameters, see [2, p. 396],

1
tr {(I — utuf)cov[ézt]} = E(Ué +o5)or + 20005, (2.8)

Since for any matrices A, B with compatible dimensions it
holds that tr(AB) = tr(BA) and (I —uul)? = (I —uul),
it also holds that

tr {(I — wu] )cov[dz] (I — ututT)} =
1

= E(aé +oh)os + 20507 - (2.9)

Note that the expression in (2.9) is the trace of the covari-

ance matrix of 3z, 2 (I —uul)dz;. The relation (2.9) will

be used in the sequel.
Let A denote the forward difference operator, e.g.

Aut = Ut41 — Ut , (210)

and let
Auy = (Is — weuf ) Auy . (2.11)

For analyzing the tracking, we shall consider a worst case
model of the evolution of wu,

we = | et (2.12)

lwe + me|

where {n:} are independent samples from the distribution
N(0,0213). Thus, the source moves randomly and equally
likely in all directions from its position at the previous time
sample. For use in the later analysis we shall derive an ap-
proximate expression for the trace of the covariance matrix
of Awu;. Using the Taylor series expansion of (2.12) we get

wirr = wit [ —wud I + Ous(|Inel|®) (213)

where Oug(||n¢||?) stands for a remainder which is uni-
formly bounded in norm by a constant times |[n:|*> both
for all ||n:| < 1/2 and for all ||n¢|| > 1/2 (see proof of
Lemma H.2 in [2]). Hence

tr{cov[Aus]} = tr{cov[(Iz — usul)n]} + E{Ous(||nt|?)}
= tr[(l3 — wewl )cov[ng](Is — wiul)] + O(ad)
= o2tr(I3 — wiul) + O(0d)
= 202 +0(c2). (2.14)
Let 6 denote the estimation error operator, e.g.
6ut = ﬁt — Ut (215)
(53,5 = ét — Zt (216)

where we assume that 8; in (2.1) is an estimate of the quan-
tity z¢ in (2.7) and put
os: = (Is —wpuf )ds; . (2.17)

Then using (2.2), (2.7), and a series expansion similar to
those in (2.12) and (2.13) we obtain

a = 8 _ zAls . w + 08057
8l llze +dsell  Jlue + 6807
= wi+[Is — weul 108077 + Ous(||0s:|05 %)
du; = 0810, + Ous(|6s:]|®0s ") (2.18)

The angular estimation error can be approximated by
dpr = 2arcsin(||; — we]|/2) = ||dwe|| + Ous (||du]|?) (2.19)

Using (2.18), (2.19) and the fact that the absolute value of
dp¢ is bounded by a constant (equal to 7) we get

I138¢llo7% + Oun(lldsell’os™)  (2.20)
I18s¢*05 " + Oun(lldsel*os ) . (2.21)

(5(/& =
[60e]?

Hence, provided that the errors eg, ex and ds; have finite
third-order moments, it holds

var[dp:] = tr{cov[ds:|}o, * + O(E[||ds¢]|*]os ©) . (2.22)



Finally note that 8; in (2.1) can be written recursively
as

Si=Nsi 1+ (1— N2 . (2.23)

The error of 8; is

08 = 8t — 2zt = A8_1+ (1 — )\),%t — Zt
= )\(Zt-1+(58t_1)+(1—)\)(zt+6zt) — Zt
= X0S¢_1 + (1 — )\)ézt — Az . (2.24)

Multiplying the last equality by Is — u;u! and neglecting
higher than first order error terms we get

SSt = Agst,1 + (1 - )\)gzt —_ )\Azt . (225)

Thus, the error sequence {Sst} can be obtained by the fol-
lowing linear filtering of the sequencies {6z} and {Az:},

- 1—X - A -
63t = W62t+1—7)\q_lAzt
S Pi(g Yoz +Ba(g DAz . (2.26)

where ¢! is the backward time shift operator.

Then, in the limit N — oo it holds that

tr{cov[ds]} = L ®1(2) D1(27 ) 27 dz - tr{cov[dz:]}

21
% %‘Ih(z)'ih(z_l)z_l dz - tr{cov[Az]}

where the integration proceeds along the unit circle in the com-
plex plane. After a straightforward calculation we get

2

;\ tr{cov[z:]} + 5z tr{cov[Az]} .(2.27)

Now, from (2.7) it follows that

tr{cov]Fsi]} = 1

Az = Zi41 — 2t = U?Aut =+ Aafut
Azt (I3 — utu?)Azt =

0'3(13 — ututT)Aut = af&ut. (2.28)

and
cov[Azi] = oicov[Au] . (2.29)

Substituting (2.29), (2.27), (2.14) and (2.9) into (2.22) we
obtain

1—X 222,

var[dp:] = T2 + T2 on +
+  OE[§zl’Jos ® + o) (2.30)
where
2, 2 2 2
2
o2 = L;;H e (2.31)

We use the above result to compute an optimal value
of the forgetting factor. If the remainder term in (2.30) is
neglected, the leading term in the equation is minimized for

A=Xo21+k— /26 + K2 (2.32)

where

2
K= (2.33)

Oz

The Taylor series expansion of (2.32) gives

) 1-v26+0(k) for £—0
)\0_{ =+ 0(%) for k—>oco0 (2.34)

This optimal choice of A is a trade-off between system re-
sponsiveness and noise sensitivity. The source position fluc-
tuates with amplitude that increases with ¢, so when o2
is large we expect a smaller forgetting factor to yield bet-
ter performance. A smaller forgetting factor lets old data
samples be “forgotten” more quickly. But as with other
tracking systems, a responsive system is generally more sus-
ceptible to measurement noise, since time averages are gen-
erally short, while a noise tolerant system is not able to
follow rapid movement of the source. Hence a trade-off be-
tween these conflicting performance measures is needed and
is solved by Ao.

3. TRACKING OF DRIFTING TARGETS

In cases when the targets are subject to a slow and persis-
tent drift or a slow and persistent acceleration, the above
algorithm exhibits an estimation delay. This delay can be
eliminated by an algorithm which, in addition to the instan-
taneous direction vector, estimates also the angular velocity
and acceleration of the target. The algorithm proposed in
this section is based on a modified Kalman filter and is
inspired by a similar one in [4].

Let %: and 4+ be the bearing velocity and acceleration,
respectively, i.e. the first and the second time derivative of
the direction vector u;. Since u; has a unit norm, ; and
u: are orthogonal to this vector.

Introduce the notation

ut
0, = [ Ut ] (3.35)

Uy

and the function

(ERE=-r=
orthnorm T2 = (13—513113?/”5131”2):132 (3.36)

3 (Is = miz] /|12

which is the projection mapping into the set of properly nor-
malized vectors €. Specifically, The function orthnorm(-)
is used to assure that the vector of direction (on top) has
a unit norm and that the velocity and acceleration vectors
(below) are orthogonal to it.

Assume that time evolution of u; is governed by the equa-
tion

0¢+1 = orthnorm (F0; + w;) (3.37)
where

I, T 221, ]
F=1 03xs Is TIy (3.38)
[ O3x3 03x3 I3 J



T denotes the sampling interval (in seconds), {w:} is a ran-
dom process noise term that accounts for random pertur-
bations about the constant acceleration trajectories. Note
that the model in (3.37) without the operation of orthonor-
malization is generally used in discussions of tracking prob-
lems and also in [4]. In this model, the acceleration is as-
sumed to be constant during the sampling interval and may
differ from one interval to another through random pertur-
bations.

The observation is then the real part of the EM cross
product:

.%t = 0': s we + (5Zt = HOt =+ (5Zt (339)
where
H =073 [I3,03x0] , (3.40)

which is of dimension 3 x 9 and 03x¢ is a 3 X 6 dimension
matrix with 0 entries. Assume that covariance matrices
of w; and of dz¢, denoted Cs, and Cj., respectively, are
known. Tracking of the state vector 8; can be solved by the
following modified Kalman filter,

0,; = orthnorm (ét\t—l + Li[2¢ — Héﬂt_l]) (3.41)
ét_,_l“ = orthnorm (Féﬂt) (3.42)
Lo = Sy H"[HS o H +C5.]" (3.43)
Xy = (Iy — LtH)Em_l (3.44)
S = FEFT+C, . (3.45)

This filter is obtained as a modification of a Kalman filter
for the model in (3.37)-(3.39) excluding the orthonormal-
ization in (3.37). Simulations show that the proposed filter
works quite well even if the theoretical covariance matrices
Cy and Cs, are replaced by identity matrices multiplied
by appropriately chosen scalar factors.

Let Cy = 02Ig and Cs, = 0215. Note from (3.43)(3.45)
that the asymptotic Kalman gain L for ¢ — oo does not
depend on the variances o2 and o2 themselves but on their
ratio ¢ = o2 /o2. Thus, it is possible to put o2 = 1 and
control the asymptotic performance of the filter by a single
parameter o2,. Note, however, that if C,, and Cs, are not
selected realistically but as ad hoc constants, then ¥, and
g1y in (3.44) and (3.45) also lose the interpretations of
mean-square estimation errors.

It is worth noting that if all three of matrices C,, Cs.
and ¥;)o are taken as multiples of the identity matrix, the
Kalman gain is identical for all three components of vectors
of the direction, velocity and acceleration. Hence it suffices
to compute a gain vector according to (3.43)—(3.45) for only
one of the components, so that e.g. the matrix to be inverted
in (3.43) will have the size of only 3 x 3 instead of 9 x 9.

The price for the improved performance of the algorithm
presented in this section, compared with those proposed in
the previous section in scenarios with a persistent drift, is
a higher computational complexity and also a longer tran-
sients at the beginning of the tracking, until the correct
wave direction, velocity and acceleration are approached.

4. CONCLUDING REMARKS

We discussed two algorithms for tracking the direction to a
moving source, using data from an EM vector sensor. We
analyzed the performance of the cross-product algorithm
with a forgetting factor, and computed an asymptotic ex-
pression of its variance of angular estimation error. This ex-
pression was used to find the optimal forgetting factor that
minimizes the error variance, as a function of the source
dynamics and sensor noise variances. The main advantage
of this algorithm is in its computational efficiency. We then
presented a Kalman fliter combined with the cross-product
algorithm, which is applicable when the angular accelera-
tion of the source is approximately constant. This method
needs more computations than the cross-product algorithm,
but is more accurate after convergence. In [3] we develop
a third algorithm of multiple forgetting factors type, and
uses a weighted average of the outputs of cross-product al-
gorithms. It has a self tuning ability which is useful when no
a priori knowledge of the source dynamics is available, but
requires more computations then the single cross-product
algorithm. We also present numerical examples demon-
strating the performance of the 3 algorithms in different
scenarios.
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