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ABSTRACT

In pattern recognition problems, the effectiveness of the analysis
depends heavily on the quality of the image to be processed. This
image may be blurred and/or noisy and the goal of digital image
restoration is to find an estimate of the original image. A funda-
mental issuein this processisthe blur estimation. When theblur is
not readily avalaible, it hasto be estimated from the observedim-
age. Two main approaches can be found in the literature. Thefirst
oneidentify the blur parametersbefore any restoration whereasthe
second one realizes these two steps jointly. We present a compar-
ative study of several parametric blur estimation methods, based
on a parametric ARMA modeling of the image, belonging to the
first approach. Our purposeis to evaluate the acuracy of the var-
ious methods, on which the restoration procedure relies, and their
robustness to modeling assumptions, noise, and size of support.

1. INTRODUCTION

It iswell known that in all problem of pattern recognition by vi-
sion, the quality of the analysis depends heavily on that of the im-
ageto process(possibly blurred and/or noisy version of the original
image) and the filtering or restoration operation hasto eliminate at
best the degradation that allocates the image while preserving the
relevant information. Thus, the goal of digital image restoration
is to estimate the original image from the degraded observed im-
age at the output of the imaging system. To solve this problem,
there exists in the literature two great approaches: the first con-
sistsin identify parameters of the blur beforehandto all processing
of restoration, the second realizes jointly the two stages. As are-
sult, when the point spread function (PSF) is not readily available,
afundamental issue in methods of both approachesis the blur es-
timation. This general problem can be divided into several levels
of difficulty. Theselevelsrelate mainly to the extent of the blur, to
the availability of an analytic PSF, to the space-variance or space-
invariance of the PSF and to the noise properties of the whole im-
age formation process. So, it is very difficult to a priori choose a
precised method to solveaparticular restoration problem. The pur-
pose of this paper is to present the results of a comparative study
of methods belonging to the fisrt appoach; more precisely of most
common blur estimation methodswhich consistin identify blur from
the observedimage, without any other prior knowledge. Thiscom-
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parative study will allow us to evaluate on the one hand, the effi-
ciency of theretained methods, from which thequality of therestora-
tion procedure highly depends, and on the other hand, to specify
their robustnessto hypothesesthey takeinto account. It is obvious
that the successof any estimation procedureisclosely linked to the
accuracy of the observation model that describes the relationship
betweentheinput (original image) and the output (observedimage)
of theimaging system. In spite of the great number of imaging sys-
tems, in many practical situations, a standard observation model is
used: the image degradation process is approximated by a linear
space-invariant blur with an additive gaussian noise [1]. Although
thismay seemquite restrictive, many common blurs are adequately
described by aparametric function with few parameters. The noise
is assumed to be an independant identically distributed zero mean
random process and covers measurement errors and quantization
errors in the sampling process.

We begin by introducing theimage and observation modelsthat
will beusedin thiswork. Theoriginal sampled image and the noise
processare represented by matrix F'and N of size N x N. By us-
ing the vec() operator [6] we obtain an algebraic expression of the
imagerestoration problem. Thestandard observation model isthen
expressed as:

g=H f+n N

where f = vec(F),n = vec(N), g representsthe observed image
and H isthe N2 x N matrix of thelinear transformation built from
the discrete PSF [1].

Whenthe PSFisspace-invariant, thematrix H isblock Toeplitz.
By usingthe circulant-to-Toeplitz approximation [ 1], which amounts
to approximating linear convolution by circular convolution, com-
putations can be simplifiedin the Fourier domain. In order to avoid
Fourier induced artefacts, the boundaries of ¢ may haveto be pre-
processed.

Now, assuming an AR representation of the original image, which
iswidely used[7] becauseit isuseful for approximating the second
order statistics of an image, the original image f is considered as
the output of a2D AR filter whoseinput is a zero-mean white noise
process u with variance o2. The spatial coordinates regression is
expressed as:

f(x,y):ZZa(k,l)f(x—k,y—l)—l—u(x,y) 2

with f(=, y) the value of the original image at coordinates (z, y),
u()) the noise processand a( ) the coefficients of thefilter of support

a-



A more compact expressionisderived by using the vec() oper-
ator [6] in order to stack the matrix F' and U representing the orig-
inal image and the input noise columnwise:

f=Af+u ®)

where f = vec(F), u = vec(U) andthematrix A isbuilt with the
AR coefficients[2].
The image autocorrelation is then expressed as:

1T

Py=E[ff=0u(I-A)T(-4) 4

Then, grouping the previousformation equation (3) andthe ob-
servation equation (1) yields the following state-space representa-
tion:

f =
g =

Af+u )
Hf+n )

It can be reduced to a single equation:

g = Hf+n )
= HAf+u+n 8)
= HAf4+Hu+n+An—An 9)

AHf+An+ Hu+(I—-A)n (10)
= AHf+n+Hu+{I-A)n (11)
= Ag4+Hu+n (12)

In equation (10), matrix H and A permute becauseof their struc-
ture. Inequation(12), (I — A) nisapproximatedby n. Thus, equa-
tion (12) represents an ARMA model which approximates the ob-
served imageg.

2. PSF ESTIMATION

Now, we present abrief review of theretained blur estimation meth-
ods. The earlier techniques of blur identification were focused on
PSF with regular patterns of zeros in the frequency domain. The
periodicity (in the case of amotion blur) or pseudo-periodicity (in
the case of a defocusing blur) of these zeros can be identified by
power spectrum or cepstral averaging [10]. These techniques do
not takeinto account the observation noise and cannot be used with
other PSF.

More recently, other blur identification techniqueswere devel-
oped usingthe ARMA modeling (12) of the observedimage[7]. As
aresult, the PSF coefficients are the MA coefficients of the model
whereasthe AR coefficientsrepresent theimage autocorrel ation and
translates a certain degree of knowledge on the original image.

Thisway, the PSF estimation becomesa problem of estimating
the MA parameters of a stochastic parametric ARMA model.

As precised before, different hypotheseson the statistical char-
acteristicsof thedistribution of » (12) canbe consideredandlead to
different methods. That iswhy we have selected firstly the method
of identification by decompositionin parallel ARMA 1D modelspro-
posed by [2], and secondly a method by resolution of alinear sys-
tem built from second order statistics of the observed image and
proposed by [5].

Now, let us consider the restoration problem. It consistsin in-
versing the direct model (1). It belongsto the classof ill-posed in-
verse problemsfor which aunigque and stable solution is not avail-
able [1]. Small variations of the degraded image can cause large

variations of the restored image. Regularization is atechniquethat
usesprior information in order to obtain a satisfactory solution.

The Tikhonov-Miller regularization has been developed in a
deterministic framework [1] and results in a stabilizing function-
nal being added to the least-squares solution of (1):

fow = mgmin J(9) = lg = H AP +21C AP (9)

where C' incorporates prior knowledge about f and X is the regu-
larization parameter.

Usually, C' is a low-order differenciation operator, such as a
first order difference operator. Theregularization parameter A con-
trolsthetrade-off betweenfidelity to the availabledatag and smooth-
ness of the estimate f. By introducing a bias on the estimate, the
mean square error of the solution is reduced [4].

Several methods exist in order to choosethe value of the regu-
larization parameter A [4]. Thegeneralized crossvalidation (GCV)
criterion is very popular becauseit provides good estimates of the
optimal valueof A without prior knowledgeof the observation noise
variance.

The GCV criterion can be expressed in the spatial domain as:

| (I - HHN)g?
[trace (I — H H: (X)) ]2

GCV (M) = 14)
where [ is the identity matrix and H. is the restoration matrix ob-
tained from (13):

HT:(HTH-i—)\CTC)_lHT (15)

The optimal value \ of the regularization parameter is chosen as
the one that minimises the GCV criterion.

A =argmin GCV(}) (16)
A

However, the GCV criterion may not have a unique minimum
[4] but this non-unicity isquite uncommon and happensmainly with
low levels of noise.

Assuming an ARMA modeling (12) of theobservedimage, the
GCV criterion can be expressedin the spatial domain as[8]:

| ({ - [HH,]®) g
[trace( T —[HH,]J(8)) T

GOV () = 17)

where, using (15), the expression of the Wiener or Minimum Mean
Square Estimate of the original image:

frumse = (H' T H 4T HIT, g (18)

and finally (4):
-1
[HH,)6) = H (HT Hax(I—A)" (- A)) H”
(19)
and the vector of unknown parametersis:

§= [h(kv l),a(p, q)v A ]T (P, Q) € 5. (20)

Reeves and Mersereau [9] show that the derivative of the ex-
pected value of the GCV criterion is equal to zero when the esti-
mated parameters are the actual parameters. For blurs described
by a single parameter 4}, they used an iterative two-steps search

(k1) € S



strategy. In afirst step, starting with aninitial guessfor the AR co-
efficients of the image, the optimal value of the regularization pa-
rameter X isevaluatedfor each valueof the parameter 6, in aprede-
termined set. Therange of the parameter 5, in which the GCV cri-
terion atains a minimum value is thus bracketed. In a second step,
the AR coefficients are estimated . Thesetwo steps areiterated un-
til the estimated parameters reach a sufficient accuracy. This third
method is retained in our comparative study.

3. THE PROTOCOL OF COMPARISON

To evaluate the efficiency and the robustness of the retained para-

metric blur identification methods, we proposeacomparison of their
performances[11], onfirstly asyntheticimage constituted by aran-

domfield, and secondly on areal image of the french data bank of

the CNRS GDR-PRC-ISIS (http://www-isis.enst.fr). Thesynthetic

image has been obtained by filtering of anindependant, identically

and exponentially distributed noise of unit variance. Thefilter used

isa symmetrical causal AR filter of support 3 whose coefficients
are:

0.1101 —0.4000 0.1101
—0.2752 1.0000 —0.2752 (21
0.1101 —0.4000 0.1107

Next, we have considered PSF with simple characteristics: sym-
metry and shift-invariance. These assumptionsare common to all
thetested methods. Theretained PSF are those of auniform motion
blur (parallel linear movement to the plan of theimage); a defocus-
ing blur without aberration; atruncated gaussianblur and apillbox
blur.

As aresult, for the synthetic blurred image, the previous as-
sumed image modelisation is well suited to the data and second or-
der statisticsexist. For thereal image, the stationarity of thestochas-
tic processmodeling the original image andthe ARMA assumption
arestronger assumptions, that need to be evaluated. Thesetwo con-
sidered images are shown in figure 1.

Now, to evaluatethe robustnessof each selected methodto vari-
ations of the PSF from the previous assumptionsor the value of the
signal to noiseratio,we have defined 6 scenarioswhich can be sum-
marized asfollows:

Scenario 1: blurred original image;

Scenario 2: blurred original image with agaussian zero mean
additive white noise of variance 2;

Scenario 3: blurred original image with agaussian zero mean
additive white noise of variance6;

Scenario4: blurred original image with agaussian zero mean
additive white noise of variance 14;

Scenario 5: blurred original image, while the blur was sub-
ject to astochastic deformation (gaussian zero mean additive white
noise of variance 10™7);

Scenario 6: blurred original image, while the blur was sub-
ject to adeterministic deformation (similarity with report 0.7 of its
Fourier transform).

The scenarios 2, 3 and 4 alow us to evaluate the robustness
of each estimation method to various levels of observation noise.
The scenario 5 givesinsights on their respective robustnessto the
symetry hypothesis.

The scenario 6 highlightstheir respective robustnessto good a
priori information on the actual value of the blur support.

Finally, thelast parameter that we havemadevary isthelength
of the support of the PSF. Three different valuesof the blur support

have been taken into account: 3x3, 5x5 and 15x15 pixels (3x1, 5x1
and 15x1 for the uniform motion blur).

Thepresentation of theresultsof thiscomparativestudy isdone
using the Mean Square Error Criterion in percent between the esti-
mated PSF and the actual PSF. The calculation of the MSE is given
by:

S (a k) —h(k, 1)
Z(k,l) h? (kv l)

where (K, 1) is the current estimated value of h(k,1) and the par

2k, b2 (D)

MSE(h) = 100 (22)

rameter a isascaling factor a =

4. SIMULATIONSAND RESULTS

For both images, results aretabulated for avalueof the blur support
equal to 5x5 pixels and then 15x15 pixels. We do not present the
resultsfor avalue of the blur support equal to 3x3 pixelssincethey
are quite similar to those obtained with a value of the blur support
equal to 5x5 pixels. Each table (table 1 and then 2) displays the
three retained methods (columnwise) against the six scenarios and
recordsin each square, blurs belonging to the four previously pre-
cised, for which the obtained value of the MSE is leather than 10%.
For each refered method, thefirst line of results has been obtained
with the synthetic image 1-a) and the second line of resultswith the
real image 1-b). A different symbol is used for each type of blur:

m: uniform motion blur;

d: defocusing blur without aberration;

g: truncated gaussian blur;

p: pillbox blur.
Scenario
| 1 |2 [3 [4 [5 |6
2|a|m g m g|m
p p
by [ mdg | m m m g mdg
p p
Bl [a|{m g m g g
p p p
b) [ m m m m m
p p p p p
[9 | & g|mdg|mdg|mdg|{m g|m
p p p p p p
b)) [ mdg|[ mdg|[mdg|[ mdg| mdg | md
p p p p p

Table 1: Blur Support equal to 5x5 pixels

Theresults given by thetables bring to light the behavior of the
retained methods of blur estimation. They allow us to give some
precised comments about the cases where the methods are espe-
cialy efficient or deficient. Indeed, for each method, we can easily
seefor which type of blurs, one gets best results.

5. CONCLUSION

A first conclusion can be drawn. Results given by the method by
decompositionin parallel ARMA1D modelsvalidate the use of the
ARMA modeling to identify synthetic blur on areal image. The



Scenario
| 1 | 2 | 3 | 4 | 5 | 6
[2]a|m g m
p
b) m m
51 | a
b)
O |a|m g|{mdg|mdg|{mdg|m g|m g
p p p p p
b) [ mdg | mdg | mdg| mdg | mdg | mdg
p p p p p

Table 2: Blur Support equal to 15x15 pixels

most precise results are obtained with the synthetic image without
any observation noise. The accuracy of these methods decreases
when the size of the support of the PSF increasesand becomeunac-
ceptablein the presence of an observation noise, even with a very
small variance. The results obtained with the real image are less
precisewithout any observation noisebut they are far lesssensitive
to the presenceof an observation noise. However, when the size of
the support of the PSF increases, the acuracy of the estimations de-
creasesmore sharply than in the case of a syntheticimage. Results
obtained with scenarios 5 and 6 lead us to underline the sensitiv-
ity of the algorithm to first, the no symmetry property of the co-
efficients of the PSF and, second, to the a priori surevaluation of
the support. The more important the size of the support, the more
marked this sensitivity. Moreover, we have been able to observe
theimportance of the characteristics of the PSF on the accuracy of
theestimation. Thisaccuracy decreaseswhen the PSF havenull co-
efficients on the outskirts as is the case with a defocalisation blur
and zeros in the frequency domain. The pillbox blur is an example
of such a PSF. These observationsexplain that most precise results
are obtained when the PSF is a truncated gaussian one. So, we can
conclude that this algorithm is interesting for real images and sy-
metrical blur with limited support.

However, the a priori estimation of the size of the support in
the general case remains to specify.

The method by resolution of alinear system built up from sec-
ond order statistics seemsnot to be very robust to modelisation er-
rors: results obtained with the synthetic image are not found with
the real image. Moreover, when the size of the support increases,
onegetsa”limit solution” independently of the observation noise.

Themethod of the monoparametric generalized crossedvalida-
tion is the one which gives the best results, especially on real im-
ages. It presentsthe advantageto directly estimate the support and
to be extremely robust to the noise. It needs on the other hand a
parametric form of the blur. Thismay limit its use when the PSF to
identify does not possessan analytic form. The use of afirst order
differentiation matrix in the computation of the criterion makesno
longer necessary to iteratively estimate both the parameter of in-
terest of the PSF and the vector of AR parameters of the original
image. Results obtained with the real image and the image realiz-
ing an AR model show this approximation is entirely justified [3].
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Figure 1: a) Syntheticimage b) Real image
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