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ABSTRACT

In pattern recognition problems, the effectiveness of the analysis
depends heavily on the quality of the image to be processed. This
image may be blurred and/or noisy and the goal of digital image
restoration is to find an estimate of the original image. A funda-
mental issue in this process is the blur estimation. When the blur is
not readily avalaible, it has to be estimated from the observed im-
age. Two main approaches can be found in the literature. The first
one identify the blur parameters before any restoration whereas the
second one realizes these two steps jointly. We present a compar-
ative study of several parametric blur estimation methods, based
on a parametric ARMA modeling of the image, belonging to the
first approach. Our purpose is to evaluate the acuracy of the var-
ious methods, on which the restoration procedure relies, and their
robustness to modeling assumptions, noise, and size of support.

1. INTRODUCTION

It is well known that in all problem of pattern recognition by vi-
sion, the quality of the analysis depends heavily on that of the im-
age to process (possibly blurred and/or noisy version of the original
image) and the filtering or restoration operation has to eliminate at
best the degradation that allocates the image while preserving the
relevant information. Thus, the goal of digital image restoration
is to estimate the original image from the degraded observed im-
age at the output of the imaging system. To solve this problem,
there exists in the literature two great approaches: the first con-
sists in identify parameters of the blur beforehand to all processing
of restoration, the second realizes jointly the two stages. As a re-
sult, when the point spread function (PSF) is not readily available,
a fundamental issue in methods of both approaches is the blur es-
timation. This general problem can be divided into several levels
of difficulty. These levels relate mainly to the extent of the blur, to
the availability of an analytic PSF, to the space-variance or space-
invariance of the PSF and to the noise properties of the whole im-
age formation process. So, it is very difficult to a priori choose a
precised method to solve a particular restoration problem. The pur-
pose of this paper is to present the results of a comparative study
of methods belonging to the fisrt appoach; more precisely of most
common blur estimation methods which consist in identify blur from
the observed image, without any other prior knowledge. This com-
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parative study will allow us to evaluate on the one hand, the effi-
ciencyof the retained methods, from which the quality of the restora-
tion procedure highly depends, and on the other hand, to specify
their robustness to hypotheses they take into account. It is obvious
that the successof any estimation procedure is closely linked to the
accuracy of the observation model that describes the relationship
between the input (original image) and the output (observed image)
of the imaging system. In spite of the great number of imaging sys-
tems, in many practical situations, a standard observation model is
used: the image degradation process is approximated by a linear
space-invariant blur with an additive gaussian noise [1]. Although
this may seem quite restrictive, many common blurs are adequately
described by a parametric function with few parameters. The noise
is assumed to be an independant identically distributed zero mean
random process and covers measurement errors and quantization
errors in the sampling process.

We begin by introducing the image and observation models that
will be used in this work. The original sampled image and the noise
process are represented by matrix F and N of size N �N . By us-
ing the vec() operator [6] we obtain an algebraic expression of the
image restoration problem. The standard observation model is then
expressed as:

g = H f + n (1)

where f = vec(F ),n = vec(N), g represents the observed image
andH is theN2�N2 matrix of the linear transformation built from
the discrete PSF [1].

When the PSF is space-invariant, the matrixH is block Toeplitz.
By using the circulant-to-Toeplitz approximation [1], which amounts
to approximating linear convolution by circular convolution, com-
putations can be simplified in the Fourier domain. In order to avoid
Fourier induced artefacts, the boundaries of g may have to be pre-
processed.

Now, assuming an AR representation of the original image, which
is widely used [7] because it is useful for approximating the second
order statistics of an image, the original image f is considered as
the output of a 2D AR filter whose input is a zero-mean white noise
process u with variance �2

u . The spatial coordinates regression is
expressed as:

f(x;y) =
X
Sa

X
a(k; l)f(x� k; y � l) + u(x;y) (2)

with f(x; y) the value of the original image at coordinates (x;y),
u() the noise process and a() the coefficients of the filter of support
Sa.



A more compact expression is derived by using the vec() oper-
ator [6] in order to stack the matrix F and U representing the orig-
inal image and the input noise columnwise:

f = A f + u (3)

where f = vec(F ), u = vec(U) and the matrix A is built with the
AR coefficients [2].

The image autocorrelation is then expressed as:

�f = E[ f f
T ] = �

2
u (I � A)�1(I �A)�1T (4)

Then, grouping the previous formation equation (3) and the ob-
servation equation (1) yields the following state-space representa-
tion:

f = A f + u (5)

g = H f + n (6)

It can be reduced to a single equation:

g = H f + n (7)

= H (A f + u) + n (8)

= H A f +Hu+ n+ A n �A n (9)

= A H f + An+H u+ (I � A) n (10)

= A (H f + n) +H u+ (I � A) n (11)

= A g +H u+ n (12)

In equation (10), matrixH andA permute becauseof their struc-
ture. In equation (12), (I �A) n is approximated byn. Thus, equa-
tion (12) represents an ARMA model which approximates the ob-
served image g.

2. PSF ESTIMATION

Now, we presenta brief review of the retained blur estimation meth-
ods. The earlier techniques of blur identification were focused on
PSF with regular patterns of zeros in the frequency domain. The
periodicity (in the case of a motion blur) or pseudo-periodicity (in
the case of a defocusing blur) of these zeros can be identified by
power spectrum or cepstral averaging [10]. These techniques do
not take into account the observation noise and cannot be used with
other PSF.

More recently, other blur identification techniques were devel-
oped using the ARMA modeling (12) of the observed image [7]. As
a result, the PSF coefficients are the MA coefficients of the model
whereas the AR coefficients represent the image autocorrelation and
translates a certain degree of knowledge on the original image.

This way, the PSF estimation becomes a problem of estimating
the MA parameters of a stochastic parametric ARMA model.

As precised before, different hypotheseson the statistical char-
acteristics of the distribution ofn (12) can be consideredand lead to
different methods. That is why we have selected firstly the method
of identification by decomposition in parallel ARMA1D models pro-
posed by [2], and secondly a method by resolution of a linear sys-
tem built from second order statistics of the observed image and
proposed by [5].

Now, let us consider the restoration problem. It consists in in-
versing the direct model (1). It belongs to the class of ill-posed in-
verse problems for which a unique and stable solution is not avail-
able [1]. Small variations of the degraded image can cause large

variations of the restored image. Regularization is a technique that
uses prior information in order to obtain a satisfactory solution.

The Tikhonov-Miller regularization has been developed in a
deterministic framework [1] and results in a stabilizing function-
nal being added to the least-squares solution of (1):

f̂TM = arg min
f

J(f) = kg �H fk2 + � kC fk2 (13)

where C incorporates prior knowledge about f and � is the regu-
larization parameter.

Usually, C is a low-order differenciation operator, such as a
first order difference operator. The regularization parameter � con-
trols the trade-off betweenfidelity to the available datag and smooth-
ness of the estimate f̂ . By introducing a bias on the estimate, the
mean square error of the solution is reduced [4].

Several methods exist in order to choose the value of the regu-
larization parameter� [4]. The generalized cross validation (GCV)
criterion is very popular because it provides good estimates of the
optimal value of�without prior knowledgeof the observation noise
variance.

The GCV criterion can be expressed in the spatial domain as:

GCV (�) =
k (I �HHr(�)) g k2

[ trace ( I �HHr(�) ) ]
2 (14)

where I is the identity matrix and Hr is the restoration matrix ob-
tained from (13):

Hr =
�
H

T
H + � C

T
C

�
�1

H
T (15)

The optimal value �̂ of the regularization parameter is chosen as
the one that minimises the GCV criterion.

�̂ = arg min
�

GCV (�) (16)

However, the GCV criterion may not have a unique minimum
[4] but this non-unicity is quite uncommon and happensmainly with
low levels of noise.

Assuming an ARMA modeling (12) of the observed image, the
GCV criterion can be expressed in the spatial domain as [8]:

GCV (�) =
k (I � [HHr ](�)) g k2

[ trace ( I � [HHr](�) ) ]
2 (17)

where, using (15), the expression of the Wiener or Minimum Mean
Square Estimate of the original image:

f̂MMSE = (HT��1
n H +��1

f )�1
H

T��1
n g (18)

and finally (4):

[HHr](�) = H
�
H

T
H + � (I � A)T (I �A)

�
�1

H
T

(19)
and the vector of unknown parameters is:

� = [ h(k; l); a(p; q); � ]T (k; l) 2 Sh (p; q) 2 Sa (20)

Reeves and Mersereau [9] show that the derivative of the ex-
pected value of the GCV criterion is equal to zero when the esti-
mated parameters are the actual parameters. For blurs described
by a single parameter �h, they used an iterative two-steps search



strategy. In a first step, starting with an initial guess for the AR co-
efficients of the image, the optimal value of the regularization pa-
rameter� is evaluatedfor each value of the parameter �h in a prede-
termined set. The range of the parameter �h in which the GCV cri-
terion atains a minimum value is thus bracketed. In a second step,
the AR coefficients are estimated . These two steps are iterated un-
til the estimated parameters reach a sufficient accuracy. This third
method is retained in our comparative study.

3. THE PROTOCOL OF COMPARISON

To evaluate the efficiency and the robustness of the retained para-
metric blur identification methods,we propose a comparison of their
performances [11], on firstly a synthetic image constituted by a ran-
dom field, and secondly on a real image of the french data bank of
the CNRS GDR-PRC-ISIS (http://www-isis.enst.fr). The synthetic
image has been obtained by filtering of an independant, identically
and exponentially distributed noise of unit variance. The filter used
is a symmetrical causal AR filter of support 3 whose coefficients
are: 2

4
0:1101 �0:4000 0:1101

�0:2752 1:0000 �0:2752
0:1101 �0:4000 0:1107

3
5 (21)

Next, we have considered PSF with simple characteristics: sym-
metry and shift-invariance. These assumptions are common to all
the tested methods. The retained PSF are those of a uniform motion
blur (parallel linear movement to the plan of the image); a defocus-
ing blur without aberration; a truncated gaussian blur and a pillbox
blur.

As a result, for the synthetic blurred image, the previous as-
sumed image modelisation is well suited to the data and second or-
der statistics exist. For the real image, the stationarity of the stochas-
tic process modeling the original image and the ARMA assumption
are stronger assumptions, that need to be evaluated. These two con-
sidered images are shown in figure 1.

Now, to evaluate the robustnessof each selectedmethod to vari-
ations of the PSF from the previous assumptions or the value of the
signal to noise ratio,we have defined 6 scenarios which can be sum-
marized as follows:

Scenario 1: blurred original image;
Scenario 2: blurred original image with a gaussian zero mean

additive white noise of variance 2;
Scenario 3: blurred original image with a gaussian zero mean

additive white noise of variance 6;
Scenario 4: blurred original image with a gaussian zero mean

additive white noise of variance 14;
Scenario 5: blurred original image, while the blur was sub-

ject to a stochastic deformation (gaussian zero mean additive white
noise of variance 10�3);

Scenario 6: blurred original image, while the blur was sub-
ject to a deterministic deformation (similarity with report 0:7 of its
Fourier transform).

The scenarios 2, 3 and 4 allow us to evaluate the robustness
of each estimation method to various levels of observation noise.
The scenario 5 gives insights on their respective robustness to the
symetry hypothesis.

The scenario 6 highlights their respective robustness to good a
priori information on the actual value of the blur support.

Finally, the last parameter that we have made vary is the length
of the support of the PSF. Three different values of the blur support

have been taken into account: 3x3, 5x5 and 15x15 pixels (3x1, 5x1
and 15x1 for the uniform motion blur).

The presentation of the results of this comparative study is done
using the Mean Square Error Criterion in percent between the esti-
mated PSF and the actual PSF. The calculation of the MSE is given
by:

MSE(ĥ) = 100

P
(k;l)

�
a ĥ(k; l)� h(k; l)

�2
P

(k;l) h
2(k; l)

(22)

where ĥ(k; l) is the current estimated value of h(k; l) and the pa-

rameter a is a scaling factor a =
P

(k;l) h(k;l) ĥ(k;l)
P

(k;l) ĥ
2(k;l)

4. SIMULATIONS AND RESULTS

For both images, results are tabulated for a value of the blur support
equal to 5x5 pixels and then 15x15 pixels. We do not present the
results for a value of the blur support equal to 3x3 pixels since they
are quite similar to those obtained with a value of the blur support
equal to 5x5 pixels. Each table (table 1 and then 2) displays the
three retained methods (columnwise) against the six scenarios and
records in each square, blurs belonging to the four previously pre-
cised, for which the obtained value of the MSE is leather than 10%.
For each refered method, the first line of results has been obtained
with the synthetic image 1-a) and the second line of results with the
real image 1-b). A different symbol is used for each type of blur:

m: uniform motion blur;
d: defocusing blur without aberration;
g: truncated gaussian blur;
p: pillbox blur.

Scenario
1 2 3 4 5 6

[2] a) m g
p

m g
p

m

b) m d g
p

m m m g
p

m d g

[5] a) m g
p p

m g
p

g

b) m
p

m
p

m
p

m
p

m
p

[9] a) g
p

m d g
p

m d g
p

m d g
p

m g
p

m
p

b) m d g
p

m d g
p

m d g
p

m d g
p

m d g
p

m d

Table 1: Blur Support equal to 5x5 pixels

The results given by the tables bring to light the behavior of the
retained methods of blur estimation. They allow us to give some
precised comments about the cases where the methods are espe-
cially efficient or deficient. Indeed, for each method, we can easily
see for which type of blurs, one gets best results.

5. CONCLUSION

A first conclusion can be drawn. Results given by the method by
decomposition in parallel ARMA1D models validate the use of the
ARMA modeling to identify synthetic blur on a real image. The



Scenario
1 2 3 4 5 6

[2] a) m g
p

m

b) m m

[5] a)

b)

[9] a) m g
p

m d g
p

m d g
p

m d g
p

m g m g
p

b) m d g
p

m d g
p

m d g
p

m d g
p

m d g m d g
p

Table 2: Blur Support equal to 15x15 pixels

most precise results are obtained with the synthetic image without
any observation noise. The accuracy of these methods decreases
when the size of the support of the PSF increases and become unac-
ceptable in the presence of an observation noise, even with a very
small variance. The results obtained with the real image are less
precise without any observation noise but they are far less sensitive
to the presence of an observation noise. However, when the size of
the support of the PSF increases, the acuracy of the estimations de-
creases more sharply than in the case of a synthetic image. Results
obtained with scenarios 5 and 6 lead us to underline the sensitiv-
ity of the algorithm to first, the no symmetry property of the co-
efficients of the PSF and, second, to the a priori surevaluation of
the support. The more important the size of the support, the more
marked this sensitivity. Moreover, we have been able to observe
the importance of the characteristics of the PSF on the accuracy of
the estimation. This accuracydecreaseswhen the PSF have null co-
efficients on the outskirts as is the case with a defocalisation blur
and zeros in the frequency domain. The pillbox blur is an example
of such a PSF. These observations explain that most precise results
are obtained when the PSF is a truncated gaussian one. So, we can
conclude that this algorithm is interesting for real images and sy-
metrical blur with limited support.

However, the a priori estimation of the size of the support in
the general case remains to specify.

The method by resolution of a linear system built up from sec-
ond order statistics seems not to be very robust to modelisation er-
rors: results obtained with the synthetic image are not found with
the real image. Moreover, when the size of the support increases,
one gets a ”limit solution” independently of the observation noise.

The method of the monoparametric generalizedcrossedvalida-
tion is the one which gives the best results, especially on real im-
ages. It presents the advantage to directly estimate the support and
to be extremely robust to the noise. It needs on the other hand a
parametric form of the blur. This may limit its use when the PSF to
identify does not possess an analytic form. The use of a first order
differentiation matrix in the computation of the criterion makes no
longer necessary to iteratively estimate both the parameter of in-
terest of the PSF and the vector of AR parameters of the original
image. Results obtained with the real image and the image realiz-
ing an AR model show this approximation is entirely justified [3].
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Figure 1: a) Synthetic image b) Real image
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