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ABSTRACT

The problem of using antenna array measurements to estimate the
bearing of a mobile communications user surrounded by local scat-
terers is considered. The concept of “partial coherence” is intro-
duced to account for thetemporalas well as spatial correlation
effects often encountered in mobile radio propagation channels. A
simple, intuitive parametric model for temporal channel correla-
tion is presented. The result is an overall spatio-temporal chan-
nel model which is more realistic than formerly proposed models
(which assume either full or zero temporal channel correlation).
Thus, previously posed bearing estimation problems for a “dis-
tributed” or “scattered” source are generalized to a joint spatio-
temporal parameter estimation problem. A study of the associated
Cramer-Rao Bound for the case of known transmitted signal of
constant modulus indicates that the inherent accuracy limitations
associated with this generalized problem lie somewhere between
the cases of zero and full temporal correlation and become more
severe as temporal channel correlation increases.

1. INTRODUCTION

Most source bearing estimation research over the past several years
has focused on sources which are modeled as single points in space
e.g., [1]. However, in applications such as mobile communications
where scatters in the vicinity of the mobile user give rise to multi-
path effects, a so-called “distributed” or “scattered” source model
is more appropriate [2]. A distributed source can be thought of as
possessing spatial extent over some continuum of directions. This
spatial extent is typically characterized by a parametric spatial den-
sity function, see e.g., [3] and references therein.

1.1. Previously Proposed Distributed Source Models

Several types of distributed sources have recently appeared in the
literature. For a so-called “incoherently distributed” (ID) source,
the time varying channel formed between the source and the ele-
ments of the antenna array is described by a random, stationary
vector process with zero temporal correlation [3]. That is, the
channel vectors are completely uncorrelated from one measure-
ment snapshot to the next. The instantaneous spatial correlation
of the channel vectors is described by a spatial correlation matrix
which is typically assumed to be known to within a set of spa-
tial parameters such as angular mean and standard deviation e.g.,
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[3]-[5]. This model is appropriate for scenarios in which the mo-
bile and/or scatterers move very rapidly with respect to the rate at
which measurements are taken.

In contrast, for a “coherently distributed” (CD) source, the
channel formed between the source and the array elements is mod-
eled as a deterministic, time invariant vector typically assumed
known to within a set of spatial parameters [3]. This model is not
suitable for mobile communications applications, but, as argued in
[3], may be suitable for active bearing estimation problems where
the transmitted signal is reflected by different parts of a “large”
object.

The “generalized array manifold” (GAM) source is related to
both the ID and CD source [6]. Like the ID source, the chan-
nel vector is again random with spatial correlation described by
a parametric correlation matrix. However, in contrast to the ID
source, the GAM channel vectors arefully correlatedin time from
one snapshot to the next. That is, the channel vectors are all equal,
consisting of asinglerealization of the random vector and (like the
CD source) are time-invariant. Moreover, the GAM source model,
is appropriate for communications applications where the mobile
and scatterers are essentially static over the entire interval during
which the received signals at the antenna array are measured.

1.2. The “Partially Coherent” Distributed (PCD) Concept

The ID and GAM cases represent the two extreme scenarios of
rapidly fluctuating (zero temporal channel correlation) and static
channel (full temporal channel correlation) conditions, respectively.
In practice, however, some intermediate scenario with partial tem-
poral channel correlation is more likely to be encountered.

This paper addresses this intermediate case by proposing a
class of stationary spatio-temporally random channel vector mod-
els which in general possesssomeform of temporal correlation,
with the ID and GAM sources included as limiting cases. In keep-
ing with the terminology proposed in [3], this class of models will
be referred to as “partially coherent distributed” (PCD) sources.

After introducing a simple, intuitive temporal correlation model
for the temporal channel correlation effects, the associated prob-
lem of bearing estimation for a PCD source is examined. The
Cramer-Rao Bound (CRB) for this problem (for the case of known
transmitted signal of constant modulus) is derived and compared to
the ID and GAM cases as key scenario parameters such as signal-
to-noise-ratio (SNR), temporal correlation effects, angular spread-
ing, and observation interval are varied.



2. MATHEMATICAL MODELING OF THE PARTIALLY
COHERENT DISTRIBUTED SOURCE

Consider a single narrow band, far field, distributed source cen-
tered at frequency,!o, with wave-fields that impinge on a co-
planar array ofM antenna elements. The discrete time complex
envelope of the receivedM �1 dimensional array snapshot vector
may thus be modeled as:

y(tk) = b(tk)s(tk) + n(tk) (1)

whereb(tk), s(tk), andn(tk) respectively, are theM � 1 chan-
nel vector formed between the user and theM antenna elements
at the array, the (scalar) signal transmitted by the mobile user, and
M � 1 additive noise vector all at discrete time,tk. Note that this
model corresponds to aflat fadingmultipath scenario e.g., [7]. The
additive noisen(tk) is a zero mean, spatio-temporally white, sta-
tionary, complex, circular, Gaussian random vector process with
covariance matrix�2nIM , whereI� denotes the identity matrix of
specified dimension.

For an ideal point source, the channel vector is the determin-
isticM � 1 array steering vector:a(�) = [e�j!o�1(�); � � � ;
e�j!o�M (�)]T , wheref�m(�)gMm=1 is the set ofM differential de-
lays across the array,� is the source bearing and(�)T denotes the
transpose operation.

For a distributed source the channel vector is modeled as a
randomvector such that:

b(tk) =

Z �

��

f(�; tkj )a(�)d� (2)

wheref(�; tkj ) is a complex, random spatio-temporal weighting
function which represents the local scattering about the source and
 represents the spatial source parameters (e.g., its mean direction
and its spread about it). The channel vector is, by application of
the central limit theorem to (2), modeled as a zero mean, circular
Gaussian random vector process.

Under the ID model, there is no correlation between succes-
sive measurements of the channel vector so it is modeled as an
independent identically distributed (i:i:d:) complex Gaussian vec-
tor of zero mean and covariance:

E[b(tk)b
H(tk0)] = �kk0Rb( )

Rb( ) =

Z �

��

r(�j )a(�)aH(�)d� (3)

wherer(�j ) is an arbitrary probability density type function which
represents the spatial distribution of the source (e.g., Gaussian,
uniform, etc.). For the GAM modeling it is assumed that all the
available measurements,y(tk); k 2 f1; � � � ; Kg, are related to
the samechannel vector,b(tk) = b, which is a zero mean com-
plex Gaussian vector of covarianceRb( ).

The idea behind the PCD model is to allow for some partial
correlation between successive samples of the channel vector. A
simple, intuitive model for (partial) temporal channel correlation is
that of the first order, stationary auto-regressive (AR) model with
a correlation between two adjacent time samples of�. This is
a space-time generalization of the purely temporal first order AR
channel model presented in eg., [8]. The suggested model for the
channel vector in the partially coherent case is:

b(tk) = �b(tk�1) +
p

1� �2bd(tk) (4)

wherebd(tk) is a zero mean complexi:i:d driving term of a zero
mean, circular Gaussian random vector process:

bd(tk) � CN (0M�1;Rb( )) ; (5)

E[bd(tk)b
H
d (tk0)] = �kk0Rb( ) (6)

where the notation� CN (�; �)means “is a complex, circular Gaus-
sian random vector of specified mean and covariance”. The above
implies thatb(tk) is a temporal correlated Gaussian random pro-
cess with first and second order statistics given as:

E[b(tk)] = 0M�1

E[b(tk)b
H(tk0)] = �jk�k

0j
Rb( )

The suggested model for the PCD source may be over sim-
plified in some cases. However, it serves as an initial model for a
practical scenario of collecting measurements in a random channel
of some given coherence time. Special cases of the above model
are the ID case, where� = 0, and the GAM, for which� = 1.
The parameters which characterize the overall model are the signal
“parameters,”s(tk), the noise variance�2n, the channel parameter,
�, and the source location parameters, .

With all parameters unknown, the overall parameter estima-
tion problem is very complicated. To reduce complexity, in the fol-
lowing, the problem of source location (i.e., estimating ) where
the channel parameter and the noise parameters are unknown, but
the signal wave-shape is known, is referred. To make it realistic it
is assumed that the complex attenuation of the received signal is
unknown. Such a scenario may be realistic when a known training
sequence is transmitted.

3. PROBLEM FORMULATION FOR KNOWN
CONSTANT MODULUS TRANSMITTED SIGNAL

Consider the case where the transmitted signal is of constant mod-
ulus, known up to a complex scale factor:

s(tk) = �se
j�u(tk); u(tk) = ej(tk) (7)

whereu(tk) is known and the signal strength and phase parame-
ters,�s and�, respectively, are unknown. In this case, a new set
of preprocessed measurements can be defined as:

~y(tk) = e�j(tk)y(tk) = �s~b(tk) + ~n(tk) (8)

~b(tk) = ej�b(tk); ~n(tk) = e�j(tk)n(tk)

The preprocessing does not in any way alter the statistical proper-
ties of the channel and the noise components which, using the new
notation above, can be expressed as:

~b(tk) = �~b(tk�1) +
p

1� �2~bd(tk)

~bd(tk) = ej�bd(tk) � CN (0M�1;Rb( ))

~n(tk) � CN (0M�1; �
2
nIM):

If K snapshots are available, the set ofK preprocessed vector
measurements can be concatenated into a single vector of length
KM :

~y =
�
~yT (t1); ~y

T (t2); � � � ; ~yT (tK)
�T

(9)



Since the channel vector and noise processes are mutually inde-
pendent Gaussian random processes, the concatenated data vector,
~y, is also Gaussian:

~y � CN (0KM�1;R~y) (10)

R~y = �2sV
Rb + �2nIKM (11)

V =

2
6666664

1 � �2 � � � �K�1

�
...

�2
...

...
... �

�K�1 � � � �2 � 1

3
7777775

where� 
 � denotes the Kronecker matrix product.
The bearing estimation problem to be solved may be formu-

lated as that of using the set ofK array snapshot measurements,
fy(tk)gKk=1, to estimate the mobile user’s spatial parameters, .

4. THE CRAMER RAO BOUND

Assume that the distributed source is spatially characterized by
two parameters: its mean direction,�0, and its spread about this
direction,�. As such, = [�0;�]T . Under this model, the
vector of all unknown parameters in the problem is:

� = [�0;�; �
2
s ; �

2
n; �]

T : (12)

Due to the Gaussianity of the data (10), the Fisher Information
Matrix (FIM) can be obtained using e.g., [9]:

Jij = tr

�
R
�1
~y

@R~y

@�i

R
�1
~y

@R~y

@�j

�
: (13)

It is shown in [10] that the FIM for the PCD is expressed in terms
of the4�4 FIM of the ID with a single snapshot, denoted byJID:

J =

KX
k=1

TkJ
ID

�
�0;�; �

2
s ;

�2n

�
(k)
t

�
T
T
k ;

Tk =

2
64
diag

�
1; 1; 1; 1

�(k)
t

�

0; 0; �2s
_�
(k)

t

�(k)
t

; 0

3
75 (14)

where�(k)t andu(k)t are, respectively, thek’th eigenvalue and the
k’th eigenvector in the eigen-decomposition ofV given in:

V =

KX
k=1

�
(k)
t u

(k)
t u

(k)H

t (15)

and _�
(k)

t is the first derivative of�(k)t with respect to�.Note that

�
(k)
t , _�

(k)

t , andu(k)t are� dependent.
The bearing of the distributed source is defined to be its mean

angle,�0. To obtain the CRB for the mean angle, one needs to
evaluate the five-dimensional FIM of (14) and to invert it. The1�1
entry ofJ�1 is the CRB on the mean direction of a PCD source of
unknown spreading, where the source signal is a known constant
modulus signal of unknown complex attenuation, and where the
level of the additive noise and the temporal correlation coefficient
of the propagation channel are unknown.

5. NUMERICAL STUDY

To illustrate the results consider a distributed source with a Gaus-
sian shape spreading, such that:

r(�j�0;�) =
1

�
p
2�
e
�(���o)

2

2�2 (16)

Assume an equally spaced four sensors linear array of inter
sensor separation of�=2, where� is the wavelength of the trans-
mitting source. Further, consider the case where�0 = 0� and
�2s = 1.

The CRB on�0 has been evaluated numerically, using the re-
sults of section 4, for different values of�, the spreading,�, the

SNR= �2
s

�2n
.

In Fig. 1 the bound for different values of� is depicted as a
function of the SNR, where the spreading is fixed to� = 10� and
the number of snapshots isK = 50. It shows that the bound for a
distributed source with random channel vector does not converge
to zero when the SNR goes to infinity. However, for� = 0 (ID)
it converges to a value

p
K smaller than for the case where� = 1

(GAM). With a partial coherent channel (0 < � < 1) the bound
behaves as that of the GAM for low SNR, and as that of the ID
for high SNR. The threshold SNR where the transition occurs is
directly related to�.

Fig. 2 depicts the bound for different values of� as a function
of the observation time, or the number of snapshots,K. The SNR
is fixed to 15dB and the spreading is fixed to10�, as before. More-
over, it can be shown that for any� < 1 the bound converges to
zero asymptotically, with a rate which is inversely proportional to
K [10].

Fig. 3 depicts the bound for different values of� as a function
of the the spreading,�. The SNR is fixed to 15dB andK = 50.
Both under the ID and the GAM models, for� = 0� the bound
converges to that of a point source. The same is true under the PCD
model with any�. However, the bound is an increasing function
of both� and�.
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Figure 1: The CRB on the mean direction of a PCD source as a
function of the signal to noise ratio.�0 = 0�,K = 50, � = 10�
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Figure 2: The CRB on the mean direction of a PCD source as a
function of the number of snapshots,K. �0 = 0�, SNR=15[dB],
� = 10�

6. CONCLUSIONS

This paper presents a model which can be used for localizing a
source in a random propagation channel, as in mobile communi-
cations. According to the model, the source is a PCD type source
since successive samples of the channel are partially correlated.
The existing incoherent model (ID) and GAM model, which is
fully coherent, are special cases of the suggested model.

A parametric model for the data received by an array of sen-
sors is derived and the CRB on the source bearing estimation error
for the case of a known, constant modulus source signal is eval-
uated. It is shown that the ID model results in optimistic bound.
Other features of the bound as a function of SNR, the spreading
and the observation time are also studied for different amounts of
temporal channel correlation.
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