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ABSTRACT

The problem to track time-varying parameters in cellular ra-
dio systems is studied, and the focus is on estimation based
only on the signals that are readily available. Previous work
have demonstrated very good performance, but were rely-
ing on analog measurement that are not available. Most of
the information is lost due to quantization and sampling at a
rate that might be as low as 2 Hz (GSM case). For that mat-
ter a Maximum Likelihood estimator have been designed
and exemplified in the case of GSM. Simulations indicate
good performance both when most parameters are varying
slowly, and when subject to fast variations as in realistic
cases. Since most computations take place in the base sta-
tions, the estimator is ready for implementation in a second
generation wireless system. No update of the software in
the mobile stations is needed.

1. INTRODUCTION

Due to the rapid expansion of the wireless mobile market,
and the need for wideband multimedia services, the avail-
able bandwidth has to be better utilized. Several transmitter
power control algorithms have been proposed to improve
the capacity. Most schemes strive to balance thecarrier-
to-interferenceratios (C/I) on each channel such that every
mobile or base station achieve the same C/I [1].

To avoid extensive signaling in the network, it is de-
sirable to use distributed algorithms, where the transmitter
powers are locally controlled based on local measurements
or estimates. For an overview, see [2, 3] and the references
therein. Most algorithms are relying on accurate C/I esti-
mates, and popular methods for estimation with good per-
formance are described in [4, 5]. In those approaches, how-
ever, it is assumed that analog signal strength measurements
are available, which is not the case in a real system. In-
stead the information is regularly available in measurement
reports. One of the core problems is to locally extract as
much relevant information as possible from these reports.
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This includes the carrier signal and the distribution of the
interference.

It is common that the measurement reports are com-
prising coarsely quantized values reflecting the perceived
quality (Quality Indicator, QI) and signal strength (Received
Signal Strength Indicator, RSSI). These values are depend-
ing on the parameters to be estimated. Hence, the mea-
surement reports contain information from two conceptu-
ally different information sources, which leads to a sensor
fusion formulation of the problem.

2. SYSTEM MODEL

Signal gains and power levels can be expressed using dif-
ferent scales. Logarithmic (e.g.dB or dBm) or linear are
often used. To avoid confusion we will employ the conven-
tion of indicating linearly scaled values with a bar. Thus�gij
is a value in linear scale, andgij the corresponding value in
logarithmic scale.

Assume that them mobile stations on a specific radio
channel are transmitting using the powerspi(t), wherei =
1; : : : ;m. The signal between mobile stationi and base
stationj is attenuated by the signal gaingij(t) (< 0). Thus
the corresponding connected base station will experience a
desired carrier signalCi(t) = pi(t)+ gii(t) and an interfer-
ence plus noiseIi(t)

Ii(t) = 10 log10

0
@X

j 6=i

�gij(t)�pj(t) + ��i(t)

1
A ;

where��i(t) denotes the thermal noise. The C/I at base sta-
tion i is defined by


i(t) = pi(t) + gii(t)� Ii(t):

In the rest of the article, only the situation at recieveri will
be considered. Therefore, thei index will be dropped for
simplicity.

The interference can be viewed as a stochastic variable
with a distribution parametrized by

mI ; �1; : : : ; �n;



wheremI is the mean value. Estimators used in previous
work are only characterizing the interference by its mean
value, see e.g. [6], and therefore this approach describes
the interference more thoroughly. Thus the parameters to
be estimated are given by

� = [C;mI ; �1; : : : ; �n]
T
:

The available measurements at the receiver in focusx =
[x(1); x(2)]T can thus be expressed by

RSSI : x(1) = h1
�
�C; �mI ; �1; : : : ; �n

�

QI : x(2) = h2
�
�C; �mI ; �1; : : : ; �n

�
;

where the functionshk(�) return realizations of stochastic
variables.

2.1. Example: Frequency Hopping GSM

In order to characterize the interference distribution, a sim-
ulation model was used. It was assumed that the interfer-
ence is constant during a burst (corresponding to0:577 ms).
The gains of the transmitted powers,gij , were modeled by
the distance depending path loss and fading (shadow and
Rayleigh). For further details regarding propagation mod-
eling, we refer to [7]. The simulations indicate that the in-
terference experienced by a user in the network is approx-
imately normal distributedN(mI ; �I). Furthermore, we
note that this conclusion is relatively independent not only
of network specific parameters such as cell radius, but also
of the distribution of the transmitted powers. This is also
supported by theoretical results, see [7, 8].

In GSM the measurement reports consist of RXLEV and
RXQUAL. RXLEV is a signal strength measure, which has
been quantized in64 levels, and RXQUAL is a logarithmic
measure of the bit error probability, quantized in 8 levels.

In the GSM case we thus have the following measure-
ments and parameters.

x = (RXLEV; RXQUAL)T

� = (C;mI ; �I)
T :

3. MAXIMUM LIKELIHOOD ESTIMATION

The estimator can be constructed in numerous ways, but we
have chosen a Maximum Likelihood (ML) estimator, since
it is successfully enables this data fusion and is an imple-
mentationally simple algorithm.

The method of ML estimation is based on a simple idea.
Different probability density functions generate different da-
ta samples and any given data sample is more likely to have
come from a particular distribution than from others. We
will not go into the basic details of how ML estimation is
implemented, instead, we refer the reader who is not famil-
iar with these concepts to [9].

Letxt denote a measurement at timet, and� the param-
eters describing the interference distribution together with
the carrier. The probability function of a single measure-
ment is a product of two probability functions; one for the
RSSI and one for the QI as below.

fX(xt;�) = f1(xt;�) � f2(xt;�)

Since the parameters we want to estimate are time vary-
ing, we want the ML estimation procedure to be adaptive.
In order to accomplish this, aforgetting factor, �, is intro-
duced. Then thelikelihood functionis given by the follow-
ing recursion

lt(�) = fX(xt;�)
1�� � lt�1(�)

�

Note that if the likelihood is equal to zero for values
in the parameter space at some time, it will remain zero.
This is not desirable, and therefore a thresholdfmin is intro-
duced. Furthermore, we use the logarithm of the likelihood
to avoid numerical problems.

The estimate,^� is then obtained as the values which
maximize the likelihood function. In order to obtain smooth
estimates, it is preferable to filter each of the estimates sep-
arately, since they change at different rates. Exponential
filtering is suitable for this purpose, see [2, 10].

Thus, we propose the following algorithm for the esti-
mator:

Algorithm: ML Estimation
Let the measurements at timet, be given by the vectorxt,
with the corresponding probability functionfX(xt;�). De-
finegX(xt;�) by

gX(xt;�) = maxffX(xt;�); fming:

Update the likelihood function according to

log lt(�) = (1� �) log gX(xt;�) + � log lt�1(�);

with the intial likelihoodl0(�) equal to a Gaussian pdf. The
estimate�(t) is given by

�̂
ML

(t) = arg max
�

lt(�):

Post-filter the estimates separately as

�̂i(t+ 1) = (1� �i)�̂
ML
i (t+ 1) + �i�̂i(t)

3.1. Example: Frequency Hopping GSM

The ML estimation algorithm requires the probability func-
tions of the measurements RXQUAL and RXLEV. In gen-
eral it is not possible to derive analytical expressions. In-
stead we compute these functions in a grid covering the in-
teresting parameter space. Based on models of the coding,



modulation and interfaces according to the GSM standard
and implementation, the value in each grid point can be ap-
proximated using Monte-Carlo simulations. The approxi-
mation of the RXQUAL probability function is illustrated
in Figure 1.
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Figure 1: The RXQUAL probability function.

4. SIMULATIONS

The simulation environment is GSM specific and the inter-
faces are the same as in the real systems. The simulator
parameters are summarized in Table 1.

Frequency band 900 MHz
Antennas Sectorized
Cell radius 1000 m
Cell layout 5� 5 clusters of 9 cells
Frequency hopping Pseudo-random
Control sample interval Tc = 0:48 s
Burst time 0.577 ms
Mobile station GSM class 4
Mean mobile station speed 50 km/h

Table 1: System simulation parameters.

In order to get a feel for ML estimation, we first con-
sider a simple case. All parameters are fixed exceptmI

which changes abruptly. The simulator is used to generate

a sequence of measurement reports, which are fed to the es-
timator. The results are found in Figure 2, where we see
that the estimator is able to track the parameters. The oper-
ation of the estimator in this case is further illuminated by
Figure 3.
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Figure 2: Estimation when there is an abrupt change in the
truemI . Above are the estimated values (dashed) plotted to-
gether with an average over several estimations (solid) and
the true values (dotted). Measurement reports: a) RXQUAL
and b) RXLEV. Estimated parameters: c) Carrier,C, d)
Mean interference,mI , e) C/I,C �mI , f) Std.dev.,�I .
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Figure 3: The shape and peak position of the likelihood
function changes, when the value ofmI changed abruptly.
The maximum of this function is seen to move in the
(C � mI )-direction. The� direction has been eliminated
by selecting the true value.

The normal situation is that the carrierC and mean in-
terferencemI are subject to fast variations due to shadow
and multipath fading, see [7]. The measurement reports in
Figure 4 are obtained from network simulations. These are
fed to the estimator and the estimated parameters are com-
pared to the true values, see Figure 5. Despite the loss
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Figure 4: Measurement reports, consisting of a) RXQUAL
and b) RXLEV, describing the perceived quality and signal
strength respectively. These values are fed to the estimator.
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Figure 5: Given the measurement reports in Figure 4 the
estimator extracts e.g. a) C/I and b) Carrier. The estimated
values (solid) are compared to the true ones (dashed).

of information in the quantization, the estimates are reason-
ably accurate.

5. CONCLUSIONS

In this work we have focused on estimation in cellular radio
systems based only on the signals that are readily available.
Previous work have demonstrated very good performance,
but were relying on analog measurement that are not avail-
able. Most of the information is lost due to quantization and
sampling at a rate that might be as low as 2 Hz (GSM case).

A Maximum Likelihood estimator has been designed
and exemplified in the case of GSM. Simulations indicate
good performance both when most parameters are varying
slowly, and when subject to fast variations as in realistic
cases.

It is ready for implementation in a second generation
wireless system. The only component that needs to be up-
dated is the software in the base stations, where the output
powers are computed. However, this estimation method is
general, and will be useful in a third generation wireless
system as well.
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