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ABSTRACT

We address the reconstruction problem of a high resolution image
from its undersampled measurements accross multiple FIR chan-
nels with unknown response. Our method consists of two stages :
blind multi-input multi-output (MIMO) deconvolution using FIR
filters and blind separation of mixed polyphase components. The
proposed deconvolution method is based on themutually referen-
ced equalizers(MRE) algorithm previously developed for blind
equalization in digital communications. For sources separation, a
method is proposed for separating mixed polyphase components
of a bandlimited signal. The existing blind source separation al-
gorithms assume that the source signals are either independent or
uncorrelated, which is not the case when the sources are polyphase
components of a bandlimited signal. Simulation results on artificial
and photographics images are given.

1. INTRODUCTION

Multi-channel image restoration and reconstruction have gai-
ned interest among workers in the last two decades. Multichannel
image reconstruction in this paper refers to the methods to obtain
higher resolution image from low resolution multiframe images.
Since the generalized sampling theorem was proposed by Papoulis
[9], for multi-channel reconstruction of a bandlimited signal from
its undersampled measurements, a great effort has been put for-
ward employing it in many applications and extending it to related
problems. For example, Unser and Zerubia [11] enlarged the class
of input signals toL2 signals. As for restoration, exact deconvo-
lution approach by using multiple image sensors to overcome the
ill-posedness associated with the single image restoration problem
has been developed into a working theory by Berenstein et. al., see
for example [1, 2].

While each of the restoration and reconstruction tasks is most
of the time addressed independently in the litterature, combined ef-
fort in a particular problem, namely high resolution restoration, has
received less attention [3, 10]. The need of high resolution multi-
channel image restoration arises, for example, when the observed
images are not only degraded by blurs and noise but also suffer
from undersampling during image acquisition step. More challen-
ging to this problem is when no sufficient information about the
blur PSF is available [10], for example in imaging through a sto-
chastically varying medium, such as a turbulent athmosphere.

In this paper we address blind reconstruction of a discrete
bandlimited image from its undersampled measurements accross
several unknown FIR channels. Due to the undersampling process,

each low resolution frame is a linear combination of the polyphase
components of the high resolution input image, weighted by the
polyphase components of the individual channel impulse response.
Accordingly, the problem considered here (blind high resolution
image restoration) can be represented as the blind 2-D deconvo-
lution of a MIMO (multi-input-multi-output) system (sometimes
called convolutive mixture) driven by polyphase components of a
bandlimited signal. It is known that blind MIMO deconvolution
based on second order statistiques contains some inherent inde-
terminations. That is, in general, we cannot identify the order, the
power and the time delay for each source. This means that after
deconvolution, the polyphase components still need to be separa-
ted. Usually this instantaneous separation is done by using some
independence assumption between the sources, which cannot be
done here, since the corresponding sources are highly correlated
(polyphase components of the same signal).

Our algorithm consists of two stages : 2-D MIMO partial de-
convolution and separation of polyphase components. For the de-
convolution stage we have extended the generalized MRE method,
previously proposed by Gesbert et. al [4], from 1-D to 2-D signals.
For the separation stage we propose a source separation algorithm
that minimizes out-of-band spectral energy resulting from instan-
taneous mixture of polyphase components. The deconvolution me-
thod using multiple FIR filters we propose belongs to the class of
algebraic methods recently studied as an extension from 1-D si-
gnals [6, 7, 8], although these works concentrate mainly on blind
identification/equalization. Here, we extend these works to high
resolution imaging.

2. PROBLEM STATEMENT

The signal measurementmodel relating a high-resolution (HR)
continuous imagex(t1; t2), ti 2 R;i = 1; 2 and a set ofK low-
resolution (LR) discrete imagesyk(n1; n2); ni 2Z;i = 1; 2; k =
1; : : : ;K, consists of two parts. The first is multiple, linear and
space invariant filters representing the degradations or blurs due
to the diffraction limited optical system, finite sensor dimension,
and medium impairments. The second part is a sampling stage fol-
lowed by a discretization process. Due to undersampling, aliasing
would be present in the observed LR imagesyk(n1; n2).

We assume that the image at the focal plane of the imaging
system, where the sensor is placed, is bandlimited. This is a reaso-
nable assumption since the optical systems are bandlimited in na-
ture. With this assumption there exists an ideal HR detector the in-
dividual sensor element of which (giving rise to a single HR image



pixel) has uniform responseu(t1; t2) over the entire Nyquist sam-
pling periodT1 andT2 in horizontal and vertical directions, res-
pectively.

GivenK measured imagesyk(n1; n2); k = 1; : : : ;K, where
each image is of sizemy � ny, we wish to find FIR restoration
filters gi;jk;p(n1; n2), each of dimensionmg � ng, so that in noi-
seless condition, a high resolution image could be reconstructed
perfectly from its low resolution measurements:

x(n1 � i; n2 � j) =
PX
p=1

KX
k=1

g
i;j

k;p(n1; n2) � yk(n1; n2) (1)

where * denotes 2-D convolution,(i; j) is a restoration delay, and
P the number of polyphase components. In this work we consi-
der that the blur functionshk(n1; n2) are unknown, although their
support or order is finite and known. Another assumption is that
the support of the spectrum ofx(n1; n2) is known. Our discrete
image formation model is exact, in the sense that no zero-padding
or circular convolution is used.

3. MULTI-CHANNEL HIGH RESOLUTION IMAGE
RESTORATION

The multi-channel high resolution image restoration method
that we propose consists of two parts, multichannel partial decon-
volution and separation of instantaneous mixture, which we will
described in following sections.

3.1. 2-D SIMO Deconvolution

We consider first the case where the detector array is suffi-
ciently dense to sample continuous images without aliasing, which
means thatP = 1. Thus, the necessary task is to restore multi-
frame images degraded only by multiple FIR blurs [6, 7, 8] and we
refer to this problem as SIMO deconvolution.

Consider the images as a set ofK separate windows of size
(mg � ng), and consider the images as the concatenation of these
windows, written as vectors as follows:

Y (n1; n2) = [yt1 : : :y
t
K ]t (2)

where:

yk = [yk(n1; n2); : : : ; yk(n1 �mg + 1; n2);

yk(n1; n2 � 1); : : : ; yk(n1 �mg + 1; n2 � ng + 1)]t;

k = 1; : : : ;K

each vector has size(mg � ng), the full image has sizeKmgng,
mg andng are the horizontal and vertical dimensions of the resto-
ration filters.

Y (n1; n2) = HX(n1; n2) + B(n1; n2) (3)

X(n1; n2) = [x(n1; n2); : : : ; x(n1 �mh �mg + 2; n2);

x(n1; n2 � 1); : : : ;

x(n1 �mh �mg + 2; n2 � nh � ng + 2)]t

whereH = [Ht1 : : : HtK ]t denotes the channel matrix of dimen-
sion(Kmgng)� (mh +mg � 1)(nh + ng � 1),

Hk =

2
66664
Hk(0) : : : Hk(mh � 1) 0

0
. ..

.. .
...

. ..
.. .

0 Hk(0) : : : Hk(mh � 1)

3
77775
(4)

Hk(m) =

2
66664

hk(m; 0) : : : hk(m;nh � 1) 0

0
. ..

...
...

. ..
. ..

0 hk(m; 0) : : : hk(m;nh � 1)

3
77775

(5)
andB is noise. The sufficient condition for the existence of decon-
volver filters is that the channel matrixH is of full column rank.
Although this is not easily characterized in terms of the blurring
filter [7, 8], assume this holds in the sequel.

The 1-D MRE algorithm, from which we developed its 2-D
version, was proposed for the first time to address 1-D blind mul-
tichannel equalization problem with only one input signal [4], and
subsequently extended to multi input case [5]. The basic principle
of the MRE method is the exploitation of simple relationships that
reveal the information redundancy at the outputs of different de-
convolver filters (equalizers) with different restoration delays. We
wish to compute different sets of restoration filters corresponding
to all possible 2-D delays, for example:

G
t(i; j)Y (n1; n2) = G

t(0; 0)Y (n1 � i; n2 � j) (6)

whereG(i; j) is (Kmgng � 1) restoration filter vector with delay
(i; j); i = 0; : : : ; mh+mg�2; j = 0; : : : ; nh+ng�2. Using eq.
(6), we look for restoration filter matrixG consisting of restoration
filters for all possible delays(i; j) by minimizing:

J1 = Ek[IN1
0N1�N2

]Gt
Y (n1; n2)�

[0N1�N2
IN1

]Gt
Y (n1; n2 + 1)k2 (7)

whereN2 = mh + mg � 1, N1 = N2(nh + ng � 1), IN1
is

(N1�N1) identity matrix, and0N1�N2 the zero matrix of appro-
priate size. This arrangement corresponds to comparison between
two blocks of windowed input image differing only by a single ho-
rizontal shift. Other possibilities are comparison between up-down
neighboring windowed image, diagonals neighboring windowed
images etc.J1 being quadratic, its minimization is very simple
[4]. It can be shown that under noiseless condition the minimum
corresponds to actual restoration filters.

3.2. 2-D MIMO Deconvolution

When undersampling occurs, aliasing contributes to the loss
of resolution, beside blurs and noise. The system model now be-
comes:

Y (n1; n2) = HX(n1; n2) +B(n1; n2) (8)

whereH = [H1 : : : HP ],X(n1; n2) = [Xt
1(n1; n2); : : : ;

Xt
P (n1; n2)]

t, andXp(n1; n2), p = 1; : : : ; P , are the polyphase



components of the original image. The channel matrixH has di-
mension(Kmgng) � P (mh +mg � 1)(nh + ng � 1) and the
restoration condition requires, as usual, thatH be of full column
rank with necessary condition:

(Kmgng) � P (mh +mg � 1)(nh + ng � 1) (9)

The assumptions concerning the size ofH are:

1. all HR channel filters have the same support,(mH ; nH),

2. mH andnH are integer multiples ofmh andnh, i.e. sup-
port of LR channel filters or polyphase components of HR
filters.

This is somewhat restrictive conditions. Nevertheless,H could still
be reconfigured to account for zero coefficients, since we assume
that(mH ; nH) is known.

After the deconvolution step, the resultingP polyphase com-
ponent images are not the original ones, namely that obtained from
the HR discrete image, but a mixture of them. This difficulty is in-
herent to any MIMO deconvolution problem. The mixture in our
case could be parametrized as an unknownP � P non-singular
matrix. In what follows we describe the proposed algorithm to se-
parate mixture of polyphase components which does not use the
assumption about the independency between sources.

3.3. Separation of polyphase components of a bandlimited si-
gnal

The separation step of mixed polyphase components that we
address in this work amounts to finding separating matrix giving
an image satisfyinga priori information about the support of its
spectrum, i.e. bandlimited. Anl2(ZN) signal is said to beband-
limited to 
 2 [��; �]N if there existsX(!) 2 L2([��;�]

N )
such that:

x(n) =
1

(2�)N

Z



X(!)ej<!;n>d! (10)

or alternately, ifX(!) = Hlpf(!)X(!), whereHlpf(!) is the
ideal lowpass filter frequency response:

Hlpf (!) =

�
1; ! 2 

0; ! 2 
c (11)

Proposition 1

A 1-D discrete time signals(n), whose polyphase compo-
nents are mixture of polyphasecomponents of a bandlimited signal
x(n), in 
 = [�!m; !m], 0 < !m < �, with mixture characteri-
zed by a nonsingular matrixB 2RP�P :

spol(n) = Bxpol(n) (12)

wherespol(n) = [s1(n) : : : sP (n)]
T andxpol(n) = [x1(n) : : : ;

xP (n)]T , P > 1, is also bandlimited to
 if and only if:

B = �:I; � 2R (13)

Corollary 1
A non bandlimited signal whose polyphase components are mix-
ture of polyphase components of a bandlimited signal defined in
Proposition 1 can be transformed into a bandlimited signalz(n) in

 by:

zpol(n) = Aspol(n) (14)

if and only if:
AB = �:I (15)

Applying to our problem, the original image and its reconstruction
both represented also in the form of polyphase vectors:

bxpol(n1; n2) = ABxpol(n1; n2) (16)

wherexpol(n1; n2) = [x1(n1; n2) : : : xP (n1; n2)]
t and, as be-

fore,A is aP � P separating matrix.

The separating matrix is the one minimizing:

J2(A) =
X

(!1 ;!2) 6=


j bX(!1; !2)j
2 (17)

under the condition thatA be a full rank matrix, where
 denotes
the support ofX(!1; !2), DFT of x(n1; n2) and bX(!1; !2) is
DFT of bx(n), the reconstructed image.

The assumption that the support ofX(!1; !2) is known seems
to be overrealistics. However, simulation results show that over de-
termination of support area does not affect very much the optimal
solution, whereas if the support area is underdetermined we have
erroneous result.

4. SIMULATION

For simulation, first we simulate bandlimited images using a
simulated image andLena image which are low-pass filtered so
that its spectral energy beyond a given support is zero. The indivi-
dual bandlimited image is then convolved with 12 blur filters, with
impulse response coefficients chosen from random distribution, of
size(6 � 6) and followed by decimation with decimation factor
2 in each direction, so that the number polyphase components is
P = 4. Using the relation in (9) we choose the size of 12 restora-
tion and reconstruction filters to be(6� 6). The following are the
steps describing the algorithm :

– First, a partial deconvolution step is carried out directly, wi-
thout identifying the PSFs, toK low resolution and degra-
ded images, resulting inP images of mixed polyphase com-
ponents.

– Source separation step is performed using onlya priori in-
formation about the spectral support of the original image,
and after that each recovered polyphase components is ar-
ranged in its corresponding grid to reconstruct a high reso-
lution image.

The results are shown in Fig. 1 for simulated TP image and Fig. 2
for Lenaimage. It should be noted that our algoritm works as well
for blind SIMO deconvolution [6, 7, 8], which is more studied than
blind MIMO deconvolution, although the results are not shown
here. Compared to other methods the computation complexity of
our algorithm does not strongly depend on the image size, but on
the size of blur and restoration filters, which certainly gives an ad-
vantage in computation complexity for images with large size.

5. CONCLUSIONS

In this paper, we proposed a new blind multi-channel high
resolution image restoration by using multiple FIR filters. Mul-
tichannel image restoration using FIR filters have received a great
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FIG. 1 –Simulated image. (a) original image, (b) 4 of 12 blurred
and undersampled images, (c) restored and reconstructed image.

(a) (b)

(c)

FIG. 2 – Lena image (a) original image, (b) 4 of 12 blurred and
undersampled images, (c) restored and reconstructed image.

deal of attention recently, either in blind or non-blind setting. Ho-
wever, most of the blind methods developed in thelitterature do
not consider undersampling process in image acquisition system.
Consequently, to obtain high resolution image, restoration task to
combat degradation due to blurs is not sufficient when aliasing is
present in the observed image. Hence, this paper presents a method
able to perform blind reconstruction and restoration of images al-
together. This has been undertaken by generalizing algorithm pro-
posed in a communication framework, under various aspects : ex-
tension to 2-D and correlated source separation. The method per-
forms very well under “clean” situations (very low noise) and is
under study for more adverse conditions.
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