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ABSTRACT
In this paper we present a method for motion segmentation, in
which accurate grouping of pixels undergoing the same motion
is targeted. In the presented technique true object edges are first
obtained by combining anisotropic diffusion of the original
image with edge detection and contour reconstruction in the
inherent scale-space. Contours are then matched according to
the distance given by a metric defined on their polygonal
approximations and the shape of the one-dimensional intensity
function along the contour. Masks of objects are obtained by
merging image areas inside of edges having the same motion.
The performance of the presented technique has been evaluated
by computer simulations.

1.  INTRODUCTION
The accurate solution to the object segmentation task is crucial
in most emerging content-based techniques supporting the next
generation of video coding standards (MPEG4 and  MPEG7)
and multimedia documents. Currently there exists a large
collection of application domains for these key technologies
including: entertainment, education, medical imaging,
augmented reality and immersive telepresence systems. In recent
years, great efforts have been made to developed motion-driven
methods for object segmentation. Among others, Ibenthal et al.
[3] describe a method in which unlike the contour-matching
approach described in this paper, a hierarchical segmentation
scheme is applied. The motion field is used in order to improve
the temporal stability and accuracy of segmentation. Chang et al.
[2] introduced a Bayesian framework for simultaneous motion
estimation and segmentation based on a representation of the
motion field as the sum of a parametric field and a residual field.
Borshukov et al. [1] present a multiscale affine motion
segmentation based on block affine modeling. Although in all
these works the dynamic of the objects present in the scene is
used to enhance the segmentation results, the extraction of
accurate object masks is not challenged because less attention is
paid to the spatial reconstruction of objects contours as basis for
object mask determination. In this context, Izquierdo and Kruse
[4] describes a method for accurate object segmentation but in
contrast to the technique introduced in this paper their approach
is tailored for stereoscopic sequences using disparity
information and morphological transformations.

In the approach presented in this paper, each frame in the
sequence is first processed by applying a non-linear diffusion
method in which averaging is inhibited in the direction of

relevant edges and smoothing the image in other regions. The
goal of this processing step is to enhance edges keeping their
correct position, reduce noise and smooth regions whit small
intensity variations. This initial processing step is detailed in the
next section. Image edges are then extracted at the location
where the second derivative of the anisotropic-diffused image
crosses zero (zero-crossings of the Laplacian). Small gapes in
the resulting contours are then closed by linking them with
straight lines. To simplify the contour matching procedure, in a
last processing step edges are approximated by polygonal lines.
These both aspects (edge extraction and linearization) are
described in section 3. The problem of finding the best fit
between image edges in two consecutive frames is finally solved
by measuring their similarity via a suitable metric defined on the
polygonal lines and the shape of the one-dimensional intensity
function along the contour. Using the fact that different objects
can be completely described by relevant edges and their motion,
object masks are extracted by merging image areas undergoing
similar motion in connected regions enclosed by a contour.
Section 4 deals with this last processing step. Selected results of
computer simulations and conclusions are drawn in section 5.

2.   EDGE ENHANCEMENT BY
ANISOTROPIC DIFFUSION

In the context of non-linear scale space, a set of images
I x y t( , , )  is generated, with I x y( , , )0  as the original image and

t as scale parameter, by applying the diffusion equation of
porous medium type

I c x y t I div c x y t It = ∇ ⋅ ∇ = ∇[ ( , , ) ] ( ( , , ) ) ,                 (1)

where the diffusion velocity c depends on the local energy at the
image position (x, y). If c is chosen as a function of the image
edges, the diffusion process should tend to a piece-wise constant
solution representing a simplified image with sharp boundaries.
That is, the amount of diffusion in each image point has to be
modulated by a function of the image gradient at that point.
Furthermore, c has to be a continuously decreasing function of
the image gradient, so that image regions of high contrast
undergo less diffusion, whereas uniform regions are diffused
with the same intensity in all directions. The evolution of the
diffusion process described by this nonlinear partial differential
equation yields a three dimensional solution space. A cross-
section of the surface at a particular time t describes the
diffusion result that we are interested in. Using the diffusion

equation (1) with c x y t f I x y t( , , ) ( ( , , ) )= ∇ 2
, a set of



anisotropic-diffused images is generated. Different choices for f
are proposed in the literature. In our work we use

f w A w
B( ) ( )= +1  as proposed by Perona and Malik [6]. Note

that the two parameters A and B, control the amount of
diffusion. If w < B, then f(w) tends to A, whereas for w > B, f(w)
tends to 0. Fig. 1 illustrates this diffusion process for the test
sequence CAR. More detailed description of these results are
given in section 5.

Fig. 1:  Diffusion preprocessing for the sequence CAR. Original
image (top) and anisotropic-diffused image (bottom).

3.   EDGE DETECTION AND
LINEARIZATION IN SCALE-SPACE

Main image contours are detected at the location where the
second derivative of the anisotropic-diffused image crosses zero
(zero-crossings of a cross-section at time t of the solution space
of (1)). We have chosen this second order differential operator
because it satisfies the above stated properties when applied to
noise-free images. Zero-crossings are extracted by regarding a
3X3 neighborhood of each sampling position in the Laplacian-
filtered images. Relevant object edges are identified in the image
obtained for a large scale-value t.  They are then completed

using edges extracted from less diffused images. For a given
discretization of the scale parameter t t tk n0 , , , ,K K , we start

with the diffused image at  scale tn  and iteratively passing from

one image to the next less diffused image, the whole object edge
is reconstructed. As stated by Perona and Malik [6], a generic
choice of c x y t( , , ) not necessarily guarantees that zero-
crossings of the Laplacian satisfy the causality condition. This
means, that zero-crossings at I x y tn( , , ) can not exist or appear

at different positions in less diffused images Nevertheless, our
experiences show that these distortions are sufficiently small to
be corrected by applying a simple procedure in which edges
detected at large scales are shifted to the position indicated by
the same edges at lower scales. Once the edge completion
process has been carried out, remaining small gaps in the zero-
crossing contours are closed by straight line segments in order
to obtain as many close contours as possible. Finally, all the
edges whose length do not exceed a given value are removed.
Fig. 2 shows the relevant edges extracted from the images
presented in Fig. 1.

Before contours in two consecutive frames are matched in order
to detect their motion, they are approximated by polygonal lines.
A suitable procedure to cope with this task has been described
in detail in [5], [7]. The method consists of expanding the
considered curve to a narrow δ -band and finding the shortest
polygonal path lying in the strip defined by the δ -band. These
approach produces a polygonal path for each contour avoiding
the worst effects of distortions in the contour. The degree of
smoothing is controlled by the bandwidth δ . Fig. 3 shows the
polygonal approximation of the curves shown in Fig 2 by
applying this technique.

Fig. 2:   Relevant edges of the image shown at the top of Fig. 1.

4. CONTOUR MATCHING

To achieve our final segmentation purpose, motion of the
contours is estimated by applying a technique based on a metric
for contour similarity, which depends directly on the global
contour shape and the shape generated by the intensity values
along it.
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be the sets of all detected relevant edges in the image at time t

and t+1, respectively. For a given contour C ZCi
t t∈  our next

task is to find the contour  in ZCt +1 that best fits with Ci
t . To

solve this, we consider the corresponding polygonal lines. The
matching is carried out using an appropriate metric for
comparing polygonal shapes. The contour corresponding to the

polygonal line in ZCt +1  with the shortest distance to Ci
t  is

then chosen as the best match.

A natural way to define a metric for comparing polygonal paths
is to use the distance between their turning functions. The
turning function ΘC s( )  of a polygonal path C measures the

total accumulating turning angle of the counterclockwise
tangent as a function of the arclength s. The turning angle is
measured from some reference point P0 on C, taking the x-axis
as the reference orientation. Thus, ΘC ( )0  is the angle v made

by the x-axis and the tangent of C in P0. In order to compare the
turning functions of two polygonal shapes, the polygonal length
is first scaled so that the total perimeter length is 1. Under this
assumption, the distance between two polygons C1  and C2  is

defined as the L2 -distance between their turning functions

ΘC s1( )  and ΘC s
2
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where . 2  is the L2 -norm. The so-defined distance is sensitive

to rotation of the polygon C1  with respect to C2  and the

location of the reference point P0 on C1  or C2 . It should be

expected, that the polygonal shape of Ci
t  and its corresponding

polygonal shape in ZCt +1  have the same orientation. For this
reason the sensitivity of d2  with respect to rotation will not

influence the matching results. To avoid the effects resulting
from a bad choice of reference points, it is necessary to set one
of the two reference points dependent on the position of the
second one. For this aim we distinguish two different cases in

our approach: if  Ci
t  represents a close contour, the reference

point P0 is set arbitrarily on the polygon approximating Ci
t ,

and the reference point on the candidate polygonal line is

chosen as the nearest point to P0.  Otherwise (when Ci
t  is

open), P0 is set in one of the two end-points of Ci
t and the

reference point on the candidate polygonal line is chosen as the
nearest end-point to P0.

To improve the reliability of the similarity measure we not only
compare the shape of the two contours but additionally we
compare the shape of the one-dimensional discrete function
generated by the image intensity when we traverse the whole
contour. To avoid effects of noise, we consider the smoothed
image I x yG ( , )  obtained by convoluting the original image

with a Gaussian kernel. Starting at P0 and traversing Ci
t

completely from the start-point P0 to its end-point Pl, the
discrete function I lC :[ , ]0 → ℜ  is defined as I i I PiC G( ) ( )= .

Note that l is the length (in pixels) of the contour, moreover Pl

lies in the 8-neigborhood of P0 when Ci
t  is closed. The graph

of IC  in the [ , ]0 l × ℜ -plane defines a contour, which is not

necessarily connected in the 8-neighborhood sense. Let us

denote this contour as ICi
t . Due to the noise reduction

performed on the image IG  and the fact that abrupt intensity

variations along Ci
t  cannot happen, it is expected that ICi

t  still

remain smooth. Obviously, ICi
t  can be approximated by a

polygonal line and its contour length can also be scaled to a
total perimeter length of 1. Under this considerations we define

the similarity measure between two relevant edges Ci
t  and

C j
t +1  extracted from the image at times t and t+1, respectively,

as:

Φ( , ) ( , ) . ( , )C C d C C d IC ICi
t

j
t

i
t

j
t

i
t

j
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2
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with α ∈[ , ]0 1  a weight coefficient. Note that Φ  is a well-

defined metric between contours.

For a given contour C ZCi
t t∈  the corresponding contour in

ZCt +1  is selected as those contour C j
t +1 for which the

following relation is satisfied:

γ = =
∈

+ +Φ Φ( , )
min

[ , ]
( , )C C

k m
C Ci

t
j
t

i
t

k
t1 1

0
, and γ ≤ T ,

where T is a predefined threshold. If γ > T , then contour Ci
t  is

declared as unmatchable.

Fig. 3.  Polygonal approximation of the edges shown in Fig. 2.

Once correspondences between edges in ZCt +1  and ZCt  have
been estimated, object masks are extracted using the motion of



pixels along the matched edges. In this last processing step a
segment mask is obtained as the connected image area with
minimal perimeter containing all relevant edges that undergo the
same or similar motion. An especial case should be considered,
when the contour of a area extracted according to this condition
intersects a unmatchable edge. Let be R such a image region,

C ZCk
t t∈  be the unmatchable edge intersecting the contour of

R and S be the set all edges totally contained in R. If the

majority of Ck
t  lies inside of R, then Ck

t is added to the set S

and new image region is extracted by applying the same

condition stated above to the set of edges S Ck
t∪ . If the

majority of Ck
t lies outside of R, then Ck

t is removed from the

set ZCt  of relevant edges in the image.

Fig. 4:   Extracted foreground segment by grouping and linking
edges undergoing the same motion.

5. SIMULATIONS RESULTS
Several experiments have been performed to examine how the
presented methods work with real data. In this section we report
on the results obtained for the sequence CAR. The image
resolution in this sequence is 720x576 pixels. The aim in this
experiment is to separate the car moving on the street from the
background. For the anisotropic diffusion procedure the
discretization of the time interval has been set as
t t for j and tj j= + = =−1 01 1 20 0, ,K . In the image at the

top of Fig. 1 the original 250th frame of the sequence is shown.
This image corresponds to the initial scale-parameter t0 . The

image shown at the bottom has been obtained for the time
instance t=20. Fig. 2 shows zero-crossings extracted from the
image at the bottom of Fig. 1. Edges were completed using zero-
crossings extracted for all diffused images at time t j  for

j = 2 20, ,K . The polygonal approximation shown in Fig. 3 has
been obtained by applying the technique described at the end of
section 3. Here, the width of the δ -band has been set to 5
pixels. Fig. 4 shows the extracted foreground object after
grouping and merging relevant edges undergoing the same
motion. Correspondences have been estimated between the

frames 250th and 252nd (skipping one frame). In this
representation intensity values inside of the extracted mask for
the foreground object are shown, while the background has been
faded out.

6.   CONCLUSIONS
A method for motion segmentation has been introduced. The
presented research addresses the problem of extract accurate
masks of physical objects in moving sequences by using the
dynamic of the scene. This goal is achieved by combining edge
detection in scale-space and matching of relevant object
contours in two different images. To solve the later task a
suitable metric for quantization similarity between two edges
extracted from different images is introduced. Finally, the
performance of the methods presented have been evaluated by
processing natural sequences. The extracted object masks
approximate quit good the shape of physical objects moving in
the scene.
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