
THE EXTENDED LEAST-SQUARES AND THE JOINT MAXIMUM-A-POSTERIORI -
MAXIMUM-LIKELIHOOD ESTIMATION CRITERIA

Arie Yeredor and Ehud Weinstein

Department of Electrical Engineering - Systems
Tel-Aviv University, Tel-Aviv, 69978, ISRAEL
e-mail: arie@eng.tau.ac.il udi@eng.tau.ac.il

ABSTRACT
Approximate model equations often relate given measurements to
unknown parameters whose estimate is sought. The Least-Squares
(LS) estimation criterion assumes the measured data to be exact,
and seeks parameters which minimize the model errors. Existing
extensions of LS, such as the Total LS (TLS) and Constrained TLS
(CTLS) take the opposite approach, namely assume the model
equations to be exact, and attribute all errors to measurement in-
accuracies. We introduce the Extended LS (XLS) criterion, which
accommodates both error sources. We define ’pseudo-linear’ mod-
els, with which we provide an iterative algorithm for minimiza-
tion of the XLS criterion. Under certain statistical assumptions,
we show that XLS coincides with a statistical criterion, which we
term the ’joint Maximum-A-Posteriori - Maximum-Likelihood’
(JMAP-ML) criterion. We identify the differences between the
JMAP-ML and ML criteria, and explain the observed superiority
of JMAP-ML over ML under non-asymptotic conditions.

1. INTRODUCTION

In a vast variety of problems in engineering it is desired to estimate
an unknown vector of parameters� from a vector of data measure-
mentsx. The parameters and the data can generally be related by
an approximate set of model equations:

g(x; �) � 0: (1)

The inconsistency of the set (1) may often be attributed to two
possibly distinct mechanisms: model mismatch and measurement
inaccuracies. Model mismatch encompasses inaccuracies that ex-
ist in (1) even when exact measurements are used. Measurement
inaccuracies, on the other hand, account for possible deviations of
the measured datax from the true (unknown) data, say~x, with
which (1) is exact (in the absence of model mismatch). In other
words, (1) may be broken down into two distinct (in)equalities:

g(~x; �) � 0 (2a)

x� ~x � 0 (2b)

where~x is a vector of ”presumed” (”accurate”) data, so that (2a)
accounts only for model mismatch, while (2b) accounts only for
measurement inaccuracies. Of course, measurement inaccuracies
can always be attributed to model errors. However, they are often
caused by mechanisms that are essentially unrelated to the under-
lying model. In such cases the distinction in (2a), (2b) is justified.

The well-known Least Squares (LS) estimation approach seeks
parameters�, which, together with the given measurementsxmin-
imize the (possibly weighted) Euclidean norm ofg(x; �):

min
�
fgT (x; �)Wg(x; �)g ) �̂LS (3)

whereW is some pre-specified symmetric positive-definite weight
matrix. �̂LS is actually the value that bringsg(x; �) as close as pos-
sible to its presumed value of0. However, it does not allow substi-
tution of the observed data, thus implying that (2b) is completely
satisfied (with equality).

On the other hand, in the context of pseudo-linear models (to
be defined immediately), some well-known modifications of LS
can be regarded as taking the opposite approach. Specifically, they
attempt to find a vector of ’presumed’ data~x and an associated
parameters vector�, with which the model equation (2a) is satis-
fied (with equality), while keeping to minimum the deviation of
the ’presumed’ data~x from the observed datax.

Such is, e.g., the Total LS (TLS) method, which was origi-
nally addressed by Golub and Van-Loan [1]. Various aspects of
TLS have since been thoroughly explored by Van-Huffel and Van-
dewalle (e.g. [2], [3]), Dowling and DeGroat (e.g. [4]) and oth-
ers. The main drawback of the TLS approach in many engineer-
ing applications is its inability to account for structural limitations
of the pseudo-linear model. Modifications of TLS in that respect
were proposed by Abatzoglou and Mendel [5], Cadzow et al. [6]
(termed Constrained TLS (CTLS)), as well as DeMoor et al. [7]
(termed Structured TLS (STLS)).

In order to adapt the estimation approach to the distinction
between the two error sources, the following Extended LS (XLS)
criterion may be considered:

Forming the concatenation of (2a) and (2b), we get

~g(x; ~x; �)
4

=

�
g(~x; �)
x� ~x

�
� 0 (4)

to which we may now apply the LS criterion, yielding the XLS
estimate of�. However, since~x is obviously unknown, we have to
minimize with respect to~x as well, obtaining as a by-product the
XLS estimate of the presumed data:

min
~x;�
f~gT (x; ~x; �) ~W~g(x; ~x; �)g ) �̂XLS (+x̂XLS) (5)

where ~W is the extended weight matrix. Often a block-diagonal
~W would be chosen,~W = diag(Wg ;Wx), whereWg andWx

fit the dimensions ofg(~x; �) andx, respectively (which need not
be the same), so that the XLS cost-function may assume the fol-
lowing form:

CXLS(~x; �) = g
T (~x; �)Wgg(~x; �)+ (x� ~x)TWx(x� ~x) (6)



to be minimized with respect to both~x and�, givenx.
It can be easily observed, that whenWg � Wx, the mini-

mization with respect to~x is dominated by the second term, and is
obviously attained near~x � x. This means, that the minimization
with respect to� simply minimizes the first term with~x replaced
by x. Obviously, this coincides with the LS estimate. We there-
fore identify the LS approach as a limiting case which rules out
deviations of the measured data from the true data, by heavily pe-
nalizing them withWx. Thus the LS estimate ”blames” all the
inconsistency in (1) on model mismatch.

When, on the other hand,Wx � Wg , minimization is at-
tained when the first term is nearly zeroed out. That means that in
the second term the minimal perturbation of the measured data is
sought, for which the model equations can be completely satisfied
with some value of�. This approach is, in a sense, the opposite
of LS, as it blames all the inconsistency on measurement inaccu-
racies. It therefore generates its own version of presumed data,
which is perfectly consistent with some�.

Careful selection ofWg andWx would normally reflect the
optimal sharing of inconsistency between model mismatch and
measurement errors. When statistical assumptions as to the nature
of the model mismatch and measurement noises are incorporated,
specific selection of weights reflects specific statistical interpreta-
tions for the obtained estimate. These interpretations are discussed
in section 4.

2. PSEUDO-LINEAR MODELS

In the context of this paper we now reduce our discussion to mod-
els termed ’pseudo-linear’ models, which are linear in the mea-
surements given the parameters, and vice versa. Such models are
necessarily of the form

g(~x; �) = A(~x)v(�) (7)

where each element of the matrixA(~x) is a linear function of the
elements of~x, and where the vectorv(�) contains the vector�
itself and possibly some additional constant. Explicitly stated, if
~x = [ ~x1 ~x2 � � � ~xN ]T , thenA(~x) can be expressed as:

A(~x) = A0 +

NX
n=1

~xnAn (8a)

whereA0;A1; : : :AN are a set of constant matrices; also,

v(�) =

�
v0
�

�
(8b)

wherev0 is some constant. The role of the free matrixA0 and
the free constantv0 is to provide optional terms that are purely
linear in� and ~x (respectively). In the absence of such terms in
the model,A0 or v0 are set to0. Without loss of generality we
may setv0 = 1 whenv0 is non-zero. In that way all the scaling
is taken care of in theA(~x) term. Note that ifv0 = 0, the model
equations can be made exact with a trivial choice� = 0, which
renders such cases uninteresting, as the XLS criterion (5) would
be minimized (zeroed out) by setting in addition~x = x. Since we
are only interested in interesting cases, we assumev0 = 1.

Pseudo-linear models can be used with the XLS criterion in a
variety of problems. For example, in estimating the parameters of
an Auto-Regressive (AR) process contaminated by additive noise,

the process’ model equations~xn = �
Pp

k=1
�k~xn�k+un (where

� = [�1 �2 � � � �p]
T are the unknown parameters andun is the

driving noise) can be expressed as:

g(~x; �) = A(~x)

�
1
�

�
=

"
A0 +

NX
n=1

~xnAn

#�
1
�

�
� 0

(9)
where~x = [~x1 ~x2 � � � ~xN ]T are (unavailable)N samples of the
underlying process,An n = 1; 2; : : : N areN � (p+ 1) Toeplitz
matrices with a diagonal of1-s at the(n; 1) thru (n + p; 1 + p)
entries (and zeros elsewhere), andA0 is also mostly zerosN �
(p+1), whose upper right triangle reflects known non-zero initial
conditions, if any.

The� sign in (9) actually conceals the driving noise sequence
un. TheN available samples comprising the data vectorx are
noisy versions of~x, such that the� sign of (2b) conceals the obser-
vation noise. We refrain from introducing statistical assumptions
pertaining to the two noise sources, since our approach is purely
deterministic at this stage.

In the context of this problem, the ordinary LS approach would
ignore the inequalityx � ~x, and treatx as a noiseless realization
of ~x, leading to the well-known Yule-Walker type equations for
estimating�. On the other hand, CTLS or STLS ignore the in-
equality in (9), and are therefore only suitable for estimating�

from a noisy realization of an AR process with zero innovations,
such as a linear system’s zero-input response to known initial con-
ditions - see e.g. De-Moor [7]. However, neither LS nor STLS
(or CTLS) are suited to this noisy AR process problem, which is
better approached by XLS.

Pseudo-linear models are also useful e.g. in the context of es-
timating the parameters of an ARX systems from noisy input and
output data, and in numerous array-processing problems.

3. MINIMIZATION ALGORITHMS

Several minimization algorithms of the XLS criterion for pseudo-
linear models are outlined in [8]. In this paper we outline the
most straightforward minimization strategy, namely the ’Alternat-
ing Coordinates Minimization’ (ACM). The basic idea exploits the
availability of closed-form solutions both for minimization with
respect to� with ~x fixed, and vice-versa. Thus, beginning with
an intelligent guess for� or ~x, the ACM algorithm alternates be-
tween minimization with respect to� treating~x as constant, and
minimization with respect to~x treating� as constant.

Due to the pseudo-linear structure, each minimization phase
involves a quadratic minimization, which results in a unique global
minimum (assuming the other coordinates fixed). Thus, in each it-
eration the value ofCXLS(~x; �) is guaranteed not to increase (usu-
ally to decrease). SinceCXLS(~x; �) is bounded below (e.g. by
zero), convergence of the algorithm to a (possibly local) minimum
is guaranteed1.

An explicit algorithm follows (a detailed derivation is given in

[8]), starting with some initial guesŝ~x
[0]

for ~x, possibly (but not

necessarily)̂~x
[0]

= x:

1To be precise, the constant decrease and boundedness guarantee con-
vergence; The convergence point is guaranteed to be a (local) minimum
because the only (local) minima can be stationary points of the alternating
minimization operation.



Algorithm:

Fork = 1; 2; : : : until convergence:
I. Minimize with respect to�:

Construct

A[k] = A0 +
PN

n=1
~̂x
[k�1]

n An

Form the partition:�
b[k] b[k]

T

b[k] B[k]

�
= A[k]TWgA

[k]

Obtain�̂
[k]

:

�̂
[k]

= �B[k]�1b[k]

II. Minimize with respect to~x:
Let

v[k] =
h
1 �̂

[k]T
iT

Construct
t
[k]
0 = A0v

[k]

T[k] = [A1v
[k]

... A2v
[k]

... � � �
... ANv

[k]]

Obtain~̂x
[k]

:

~̂x
[k]

=
h
T[k]TWgT

[k] +Wx

i�1

�

�
h
Wxx�T[k]TWgt

[k]
0

i
Upon convergence (k = K), set�̂XLS = �̂

[K]
.

As a by-product,̂xXLS = ~̂x
[K]

.

The ACM algorithm exhibits slow convergence rates in many
cases, depending strongly on the relative scale between the weight
matricesWx andWg. Alternative algorithms (based on extend-
ing the CTLS [6] and STLS [7] methods) with significantly faster
convergence rates and moderate computational costs are presented
in [8]. Note that although the ACM algorithm is reminiscent of
the Estimate-Maximize (EM) algorithm (e.g. [9]) for computing
the Maximum-Likelihood (ML) estimate, the two algorithms (and
respective estimators) are essentially different - as discussed in the
next section and in [8].

4. STATISTICAL INTERPRETATIONS

The LS criterion often has a statistical interpretation, as it coin-
cides with the ML criterion, e.g. when the model inaccuracies are
modeled as a Gaussian noise. In this section we present the sta-
tistical interpretation of the XLS criterion under certain similar as-
sumptions. We show that it coincides with a different statistical cri-
terion, which we term ’Joint Maximum-A-Posteriori - Maximum-
Likelihood’ (JMAP-ML).

4.1. The JMAP - ML estimation criterion

Consider the following statistical model: Let~x andx be two zero-
mean jointly Gaussian random vectors (r.v.’s), whose joint covari-
ance matrix is known up to an unknown parameters vector�,

�
~x
x

�
� N

 
0;�(�)

4

=

�
�~x~x(�) �~xx(�)
�x~x(�) �xx(�)

�!
: (10)

Assume that we are given a realization ofx (but have no access
to ~x), and wish to estimate�. The classical ML approach would

estimate� as the maximizer of the (marginal) probability density
function (pdf) ofx, f(x; �) (or its log), or, equivalently, as the
minimizer of

C1(�)
4

= x
T
�
�1
xx (�)x+ log j�xx(�)j: (11)

An alternative approach would be to involve an estimate of
the unobserved~x, by maximizing the joint pdf of the observation
x and the unknown~x with respect to both~x and�. This yields
what we would term the ’joint MAP-ML’ estimate of�, since it
involves a joint MAP estimate of~x and an ML estimate of�. For
brevity we shall denote that estimate�̂J:

max
�

n
max
~x
flog f(x; ~x; �)g

o
) �̂J: (12)

The value of~x that maximizeslog f(x; ~x; �) is given by the
same value that maximizes the conditionallog f(~xjx; �), namely -
the well-known MAP estimatê~xMAP = �~xx(�)�

�1
xx (�)x, which,

when substituted into (12) eliminates~x from the minimization.
The problem can thus be reduced to maximization with respect to
� of log f(x; ~̂xMAP; �), which translates into minimization of the
following cost-function:

C2(�)
4

= x
T [QT (�)��1(�)Q(�)]x+ log j�(�)j (13)

where

Q(�) =

�
I

�~xx(�)�
�1
xx (�)

�
: (14)

Using four-blocks inverse notation for��1,

�
�1 =

�
P �P�~xx�

�1
xx

���1
xx�x~xP ��1

xx +��1
xx�x~xP�~xx�

�1
xx

�
(15)

whereP = [�~x~x��~xx�
�1
xx�x~x]

�1, and applying some cumber-
some but straightforward algebraic manipulations, we obtain

Q
T (�)��1(�)Q(�) = �

�1
xx (�) (16)

rendering identical the first terms of bothC1(�) andC2(�). Note
that only these (first) terms in each cost function carry the direct
dependence on the measurementsx.

As for the deterministic part, using a2 � 2 block-triangular
factorization for�, we can obtain (see [8] for details)j�j =
j�xxj � j�~x~x � �~xx�

�1
xx�x~xj, so thatC2(�) can be written in

terms ofC1(�):

C2(�) = C1(�)+log j�~x~x(�)��~xx(�)�
�1
xx (�)�x~x(�)j: (17)

The additional term is a deterministic function of� (indepen-
dent of the measurements), which has the following interesting
property: For each value of�, consider the hypothetical problem
of estimating~x from x when� is known. The additional term of
(17) coincides with the determinant of the estimation error covari-
ance in that hypothetical problem. It can therefore be expected,
that in the original problem of estimating�, �̂J (minimizer ofC2)
should tend away from̂�ML (minimizer ofC1) in the direction of
values of� with which the hypothetical estimation of~x from x

would attain asmallercovariance.
For example, note that this tendency explains observations made

e.g. in [10], [11]: when the two methods are applied to the estima-
tion of the poles of noisy speech (modeled as an all-poles process),



the poles estimated using the criterion we termed ’JMAP-ML’ tend
more towards the unit-circle relative to their ML estimate counter-
parts. This is because for poles closer to the unit-circle, estimating
the underlying speech process (~x) from the noisy measurement (x)
would attain a smaller error covariance (under similar noise condi-
tions)2 - which means a smaller second term in (17); therefore an
estimate of� usingC2(�) would tend more towards that constel-
lation than an estimate based onC1(�)

Under asymptotic (N ! 1) conditions,�̂ML is well-known
to be unbiased with minimum variance (attaining the Cram´er-Rao
Lower Bound). However, under non-asymptotic conditions�̂ML

is often biased away from that constellation, so that�̂J may par-
tially correct that bias, and even have a smaller variance (and mean
squared error (m.s.e.)) than̂�ML . In fact, in [8], a comprehen-
sive error analysis of̂�ML and �̂J in estimating the parameter of a
first-order AR process in white noise reveals the advantages of�̂J,
especially with short data records.

4.2. JMAP-ML and the XLS criterion

We now turn to relate the XLS criterion to the JMAP-ML criterion.
The pseudo-linear model (7) may also be written asg(~x; �) =
t0(�) +T(�)~x, where

tn(�)
4

= Anv(�) n = 0; 1; : : : N (18)

and

T(�) = [t1(�)
... t2(�)

... � � �
... tN (�)]: (19)

Let u denote the vector of model errors, namelyu = g(~x; �),
assumed to be zero-mean Gaussian with covariance�uu.

We now make several further assumptions (some of which can
be relaxed, as detailed in [8]):

i. t0(�) = 0 (for all possible values of�);

ii . T(�) is full-rank (for all possible values of�);

iii . The dimensionN of ~x equals the dimensionp of g(~x; �).

Note that by assumptions(ii) and (iii) T(�) is square invertible.
Consequently,~x is also a zero-mean Gaussian vector, with covari-
ance�~x~x(�) = T�1(�)�uu(T

�1(�))T , so that

log f(~x; �) = c+ log jT(�)j �
1

2
(T(�)~x)T��1

uu(T(�)~x) (20)

wherec is a constant that does not depend on�.

Let �
4

= x � ~x denote the vector of measurement errors, as-
sumed zero-mean Gaussian, independent ofu, with covariance
���. Thenx and ~x are zero-mean jointly Gaussian, as in (10).
The JMAP-ML criterion for estimating� fromx can be written as
C2(~x; �) = log f(x; ~x; �) = log f(xj~x) + log f(~x; �), or

C2(~x; �) = c
0 �

1

2
(x� ~x)T��1

�� (x� ~x) + log jT(�)j

�
1

2
(T(�)~x)T��1

uu(T(�)~x) (21)

wherec0 is another constant, independent of�. If we further as-
sume thatjT(�)j does not depend on� (althoughT(�) certainly

2The ability to obtain a better estimate ofx when the poles are closer
to the unit circle dwells on the fact that the narrowed spectrum implies
a longer correlation time ofx, which enables better exploitation of inter-
sample dependence.

does; this is the case in many situations of interest), we identify
that maximization of the JMAP-ML criterion is equivalent with
the minimization of

CXLS(~x; �) = g
T (~x; �)Wgg(~x; �)+(x�~x)TWx(x�~x) (22)

whereWg = ��1
uu andWx = ��1

�� . This is exactly the block-
diagonal weights version (6). However, while this ’natural’ choice
of weights attributes a statistical interpretation to the XLS crite-
rion, it is not necessarily optimal (in terms of the attained m.s.e.)
in a given statistical scenario - as demonstrated in [8].

5. SUMMARY

The XLS criterion is useful for distinguishing model errors from
measurement errors, and can be minimized by the ACM algorithm,
and by other, computationally more efficient algorithms developed
in [8]. Under some general conditions, the deterministic XLS
criterion coincides with the statistical JMAP-ML criterion. The
JMAP-ML estimator (the XLS estimator with specific weights)
tends towards certain parameters constellations relative to the ML
estimator. Thus, with long data records, when ML is unbiased,
JMAP-ML is biased. However, it is shown in [8], that with short
data records JMAP-ML can outperforms ML in terms of both bias
and variance and, moreover, that proper selection of weights for
the XLS criterion may outperform JMAP-ML.

6. REFERENCES

[1] G.H. Golub and C.F. Van Loan, “An analysis of the total least squares
problem,” SIAM J. Numer. Anal., vol. 17, no. 4, pp. 883–893, 1979.

[2] S. Van Huffel and J. Vandewalle,The Total Least Squares Problem:
Computational Aspects and Analysis, Frontiers in Applied Mathe-
matics series, vol. 9, SIAM, Philadelphia, 1991.

[3] S. Van Huffel, Ed., Recent Advances in Total Least Squares Tech-
niques and Errors-In-Variables Modeling, SIAM Proceedings Series.
SIAM, Philadelphia, 1997.

[4] E.M. Dowling, R.D. DeGroat, and D.A. Linebarger, “Total least
squares with linear constrains,”Proc. ICASSP-92, vol. 5, pp. 341–
344, 1992.

[5] T.J. Abatzoglou, J.M. Mendel, and G.A. Harada, “The constrained
total least squares technique and its application to harmonic super-
resolution,” IEEE Trans. Signal Processing, vol. vol. 39, no. 5, pp.
1070–1087, 1991.

[6] J.A. Cadzow, “Total least squares, matrix enhancement, and signal
processing,”Digital Signal Processing, vol. 4, pp. 21–39, 1994.

[7] B. De Moor, “Total least squares for affinely structured matrices and
the noisy realization problem,”IEEE Trans. Signal Processing, vol.
42, no. 11, pp. 3104–3113, 1994.

[8] A. Yeredor, The Extended Least Squares Criterion for Discriminat-
ing Measurement Errors from Model Errors: Algorithms, Applica-
tions, Analysis, Ph.D. thesis, Tel-Aviv University, Faculty of Engi-
neering, Dept. of Electrical Engineering - Systems, 1997.

[9] A.P. Dempster, N.M Laird, and D.B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,”Ann. Royal Stat. Soc.,
vol. Ser.3g, pp. 1–38, 1977.

[10] Y. Bar-Shalom, “Optimal simultaneous state estimation and parame-
ter identification in linear discrete-time systems,”IEEE Trans. Auto-
matic Control, vol. 17, no. 3, pp. 308–319, 1972.

[11] J.S. Lim and A.V. Oppenheim, “All-pole modeling of degraded
speech,”IEEE Trans. Acoustics, Speech and Signal Processing, vol.
26, no. 3, pp. 197–210, 1978.


