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ABSTRACT
Approximation order, linear phase symmetry, time-frequency lo-
calization, regularity, and stopband attenuation are some criteria
that are widely used in wavelet filter design. In this paper, we pro-
pose a new criterion called good multifilter properties (GMPs) for
the design and construction of multiwavelet filters targeting image
compression applications. We first provide the definition of GMPs,
followed by a necessary and sufficient condition for an orthonormal
multiwavelet system to have a GMP order of at least 1. We then
present an algorithm to construct orthogonal multiwavelets possess-
ing GMPs, starting from any length-2N scalar CQFs. Image com-
pression experiments are performed to evaluate the importance of
GMPs for image compression, as compared to other common filter
design criteria. Our results confirmed that multiwavelets that pos-
sess GMPs not only yield superior PSNR performances, but also
require much lower computations in their transforms.

1. INTRODUCTION

Over the past few years, there has been an increasing number of re-
search activities on multiwavelets, both in pure mathematics (e.g.
[1], [3], [4]) as well as engineering applications (e.g. [7], [8], [10]).
Such growing interests in multiwavelets mainly stem from the fol-
lowing facts: (i) multiwavelets can simultaneously possess orthog-
onality, symmetry, and a high order of approximation for a given
support of the scaling functions (this is not possible for any real-
valued scalar wavelets [2]); and (ii) multiwavelets have produced
promising results in the areas of image compression and denoising.

One of the great challenges to successful application of mul-
tiwavelets of multiplicity r is the problem of initialization / pre-
filtering, which requires the generation of r input (vectorized) data
streams from a single source stream. Different proposals that ad-
dress the above problem can be found in [7], [10] and [11]. Another
important issue that contributes to the success of multiwavelets lies
in the good design and construction of multifilters for a particular
application. Several filter design criteria such as regularity, approx-
imation order, and optimum time-frequency resolution have been
suggested [1], [5]. In [10], we introduced a new criterion called
the good multifilter properties (GMPs).
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The focus of this paper is twofold: to introduce a new class
of orthonormal multiwavelets possessing a GMP order of at least
1, and to study different multifilter design criteria useful for im-
age compression. For simplicity of exposition, but without loss of
generality, we will only consider multiwavelets of multiplicity r =
2. Sec. 2 briefly reviews the concepts of an equivalent scalar filter
bank system, and the definition of GMPs. Sec. 3 presents a pro-
cedure to construct a class of multiwavelets possessing GMPs. A
comparison of various multifilter design criteria is carried out in
Sec. 4, followed by discussions and the conclusion in Sec. 5.

2. EQUIVALENT SCALAR FILTER BANK SYSTEM AND
GOOD MULTIFILTER PROPERTIES

An orthonormal multiwavelet system consists of compactly sup-
ported orthonormal multiscaling function vector � = (�1; �2)

T

and orthonormal multiwavelet vector 	 = ( 1;  2)
T satisfying

�(x) =
X
k2Z

P k�(2x� k); 	(x) =
X
k2Z

Qk�(2x� k);

where fP kg and fQkg are some finitely supported sequences of
2 � 2 matrices, which are known as the matrix lowpass and high-
pass filters, respectively. Equivalently, their Fourier transforms,
P (!) := 1

2

P
k2Z

P ke
�jk! and Q(!) := 1

2

P
k2Z

Qke
�jk!, are re-

ferred to as the refinement mask and wavelet mask, respectively.
The orthonormality of � and 	 can also be expressed by the fol-
lowing perfect reconstruction (PR) conditions:

P (!)P �(!) + P (! + �)P �(! + �) = I2�2; (1)

P (!)Q�(!) +P (! + �)Q�(! + �) = 02�2; (2)

Q(!)Q�(!) +Q(! + �)Q�(! + �) = I2�2; (3)

where the superscript � denotes conjugate transpose. Specifically,
the sequence fP kg that satisfies (1) is called a conjugate quadra-
ture filter (CQF). As proved in [5], we know that b�(0), the zero
moment of �, also satisfies the following equations:

b�T
(0)P (0) = b�T

(0) and b�T
(0)P (�) = 0: (4)

In order to analyze the frequency response characteristics of
a given multifilter, we introduced in [10] the concept of an equiv-
alent scalar filter bank system, which provides a sufficient repre-
sentation of a given multifilter system. For any orthonormal mul-
tiwavelet system fP k;Qkg, we showed that there exists a set of



r = 2 equivalent scalar (wavelet) filters, P�(!); � = 1; 2, with
the frequency responses satisfying

[P1(!);P2(!)]
T = P (2!)[1; e�j!]T ; (5)

such that the two systems produce identical input-output relation-
ships. The corresponding definition ofQ�(!) associated with fQkg
is similar to (5). It was further shown that, in fact,P (!) andQ(!)
are the polyphase matrices ofP�(!) andQ�(!); � = 1; 2, respec-
tively.

In [10], we also presented an approach to transform P (!) and
Q(!) into

P
](!) = UP (!)U�1 and Q

](!) = UQ(!)U�1; (6)

using an orthogonal matrixU such that the vectorU b�(0) is paral-
lel to the vector [1; 1]T . Clearly, �](x) = U�(x) and 	](x) =
U	(x) also constitute an orthonormal multiwavelet system with
P

]
k = UP kU

�1 and Q]
k = UQkU

�1, k = 0; : : : ; N , for
some fixed positive integerN . We later exploited the simplicity of
matrixU to introduce a generalized, low complexity, and compact
representation paradigm for multiwavelet initialization and discrete
multiwavelet transforms.

Having established the relationship between a multifilter sys-
tem and its equivalent scalar filter system, we can now characterize
a given multiwavelet as follows:

Definition 1. A given orthonormal multiwavelet system fP k;Qkg
is said to possess a GMP order � if the fP ]

kg’s equivalent scalar
lowpass filters, fP]

�(!)g, possess the following properties:

d`

d!`
P]
�(�) = 0; ` = 0; 1; : : : ; �� 1; (7)

for all � = 1; 2, and � � 1.

Condition (7) ensures that fP]
�(!)g; � = 1; 2, have at least one

vanishing moment, which also implies that there is no DC leak-
age. This is very important for image coding as it helps to prevent
checkerboard artifacts in the reconstructed images. In general, the
frequency properties of the highpass filters can be completely de-
termined from those of the lowpass filters [10].

3. CONSTRUCTION OF MULTIWAVELETS WITH
GMP’S

In this section we first give a necessary and sufficient condition by
means of its refinement mask to check whether a given multifilter
possesses GMPs. Starting from any scalar filter bank system, we
then present a 4-step procedure for the construction of a class of
orthogonal multiwavelets possessing GMPs.

Proposition 1. A given orthonormal multiwavelet system fP k;Qkg
will have a GMP order of at least 1 iff the matrixP (0) is singular;
else, it is considered to possess no GMPs.

Proof. Sufficient: It is clear form (5) and the definition of GMPs
in (7) that P ](0)[1;�1]T = 0, i.e., P (0) is singular.

Necessary: Suppose that P ](0) =

�
a b
c d

�
. From the similar-

ity transformation in (6), we always have P ](0)[1; 1]T = [1; 1]T .
In addition to the fact that P ](0) also satisfies (4), we have a = d
and c = b. If P ](0) is singular, we have a = b = c = d = 1

2
,

which implies that the multiwavelet system fP k;Qkg must pos-
sess a GMP order of at least 1.

Now we will present the algorithm to construct an orthonormal
multiwavelet system with GMPs, given any length-2N scalar CQF,
fhkg2N�1k=0 .
Step 1: Construct a 2N � 2N matrixM = [mi;j ]i;j=1;:::;2N that
has only the following non-zero elements:

m2i�1;2i�1 = 1; m2i�1;2i = ��;
m2i;2N�2i+1 = 1; m2i;2N�2i+2 = �:

where � = 1 or �1.
Step 2: Construct a length-4N scalar CQF fNhkg4N�1k=0 such that
the even and odd filter taps are given by

[� � �Nh2k � � � ]T =
1

2
M [� � �hk � � � ]T ;

Nh2k+1 = � (�1)k+1Nh2k:

Step 3: Construct the matrix lowpass filter fP kg2N�1k=0 using one
of the following two possibilities:
(i) � = 1

P 2k =

�
Nh4N�4k�2 �Nh4k
Nh4N�4k�2 Nh4k

�
;

P 2k+1 =

�
Nh4k+2 Nh4N�4k�4
�Nh4k+2 Nh4N�4k�4

�
;

(ii) � = �1

P 2k =

�
Nh4k Nh4N�4k�2
�Nh4k Nh4N�4k�2

�
;

P 2k+1 =

�
Nh4N�4k�4 �Nh4k+2
Nh4N�4k�4 Nh4k+2

�
:

Step 4: Construct the associated matrix highpass filter fQkg2N�1k=0

Qk = (�1)kP 2N�1�kA; where A =

�
0 1
1 0

�
;

regardless of whether � = 1 or �1.
It can easily be checked that the multifilter system fP k;Qkg

satisfies PR conditions (1) – (3). We also have the following rela-
tions:

P k = SP 2N�1�kS; Qk = SQ2N�1�kS;

where S = diag(1;�1), which imply that the multiscaling func-
tions and multiwavelets are symmetric-antisymmetric pairs centered
at the point N � 1

2
, respectively. By Proposition 1, we can further

prove that the multifilter system fP k;Qkg possesses a GMP order
of at least 1.

As a constructive example, starting from the following param-
eterized length-4 scalar CQF

�(�� 1)

�2 + 1
;

1� �

�2 + 1
;

1 + �

�2 + 1
;

�(�+ 1)

�2 + 1
;

we can construct, for the case of � = 1, a family of orthonormal
multiwavelets, fP kg3k=0, with a GMP order of at least 1, as

P 0 =
1

2

"
(��1)2

�2+1
1��2

�2+1
(��1)2

�2+1
�2�1
�2+1

#
;P 1 =

1

2

"
(�+1)2

�2+1
1��2

�2+1
�(�+1)2

�2+1
1��2

�2+1

#
;

P 2 = SP 1S and P 3 = SP 0S. The associated matrix highpass
filter fQkg3k=0 can be obtained from Step 4. The parameter � pro-
vides one degree of freedom for selecting another useful multifilter
design criterion, which we will show later.



Multiwavelets Scalar Wavelets
GHM REG AP T-F SA4(1) SA4(2) SA4(3) D4 D8

Reference [3] [5] [1] [5] [8] & [10] [2] [2]
Filter Taps 4 4 4 4 4 4 4 4 8
Orthogonal Yes Yes Yes Yes Yes Yes Yes Yes Yes
Symmetric Yes Yes Yes Yes Yes Yes Yes No No

Approx. Order 2 2 3 2 1 2 1 2 4
Regularity 1.0 1.2668 0.9408 1.2303 * 1.0270 * 0.55 1.275

Stopband Error 0.6012 0.3695 0.3565 0.3812 0.3459 0.3571 0.3236 0.4478 0.3165
GMP Order None None None None 2 1 1 N.A. N.A.

Table 1: Properties of various multiwavelet and scalar wavelet filters. �Note that the regularity of SA4(1) and SA4(3) could not be computed
accurately, as limited by the fact that their approximation orders are less than 2.

4. PERFORMANCE ANALYSIS OF VARIOUS
MULTIFILTER DESIGN CRITERIA

In this section, we will compare and contrast the relative impor-
tance of various multifilter design criteria used in the construction
of multiwavelets targeting image compression applications. The
following six multifilters design criteria are investigated:
�Approximation Order. A higher approximation order of the mul-
tiscaling functions corresponds to higher vanishing moments of the
multiwavelets. As signals are projected onto the space spanned by
the multiscaling functions, multifilters with a higher approximation
order usually leads to better energy compaction (or higher coding
gain).
� Regularity/Smoothness. Regularity provides a measure of the
smoothness of the functions. Smoother functions (particularly for
the synthesis multifilters) contribute to the reduction of checker-
board artifacts in the reconstructed images.
� Time-Frequency Localization. Finite-length multiwavelet fil-
ters provide a flexible trade-off between time and frequency (scale)
localizations. Higher localizations may contribute to more efficient
coding of high-frequency wavelet coefficients.
�Linear Phase Symmetry. Phase linearity of a transform is deter-
mined by the symmetry of the multifilters. Symmetric multifilters
help reduce phase distortions around edges and borders of the re-
constructed images.
� Stopband Attenuation. Stopband attenuation measures the pass-
band and stopband deviations from the ideal brick-wall filter. A
sharper cutoff frequency at the transition band is useful but it usu-
ally results in longer multifilters.
�Good Multifilter Properties. GMPs characterize the magnitude
responses of the equivalent scalar filter bank associated with a mul-
tifilter. Multifilters possessing GMPs help prevent both DC and
high-frequency leakages across bands, which can contribute to re-
duced smearing, blocking and ringing artifacts.

To perform a consistent and thorough comparative study of mul-
tifilter design criteria for image compression, we tested the follow-
ing seven symmetric-antisymmetric (except for GHM which both
scaling functions are symmetric), orthonormal 4-tap multiwavelets:
(i) GHM is one of the earliest multiwavelets constructed using frac-
tal interpolation [3]; (ii) REG has the highest regularity [5]; (iii)
AP has the highest approximation order [1]; (iv) T-F has optimal
time-frequency localization [5]; (v) SA4(1) has the highest GMP
order of 2; (vi) SA4(2) has the highest approximation order while
possessing GMPs; and (vii) SA4(3) has optimal stopband attenu-

ation while possessing GMPs. The Daubechies’ scalar wavelets
D4 and D8 are used for benchmarking purposes. It is noted that
only the SA4 family [8], [10] possesses a GMP order of at least 1.
For example, we obtain SA4(1) when � =

p
15=5, SA4(2) when

� = (
p
19 � 2)=3, and SA4(3) when � = 0:749423. Some spe-

cific properties of each multiwavelet are summarized in Table 1.
For the purpose of fair comparisons, the same still image codec

[6] is used for all the multifilters. Similar comparative results were
also obtained for codec [9]. Table 2 compares the compression per-
formances of the multifilters, each having a different combination
of useful multifilter design criteria. Bold values represent the filters
that perform best for particular image / compression ratio pairs. It
can be concluded that SA4(3) has emerged as the winner for all the
tested images over a wide range of bit rates. We also showed [8],
[10] that the SA4 family of multiwavelets that possess GMPs have
much lower computational complexity; for example, the scalar D8
has 2.67 times higher complexity than SA4.

5. DISCUSSIONS AND CONCLUSIONS

The simulation results verified the usefulness of GMPs for construct-
ing multiwavelets targeting image compression applications. Fig. 1
provides some insights by analyzing the magnitude responses of
the respective equivalent scalar filters corresponding to different
multiwavelets. It is clear from the plots that the GHM, REG, AP,
and T-F multiwavelets do not vanish at ! = �, which also imply
that they do not possess GMPs. The SA4 family of multiwavelets,
on the other hand, have a GMP order of at least 1. In particular, we
also noted that the plot of AP is nearly zero (� 0.036) at ! = �,
which likely explains its better performance as compared to other
multiwavelets without GMPs.

In conclusion, the following observations can be made from
our study:
(i) A GMP order of at least 1 is critical for ensuring no frequency
leakages across bands; hence, improving compression performance;
(ii) A sharper cutoff frequency at the transition band can be more
useful than having a higher approximation order (comparing SA4(3)
against SA4(2));
(iii) Having the highest GMP order alone may not yield the best
multifilter for image compression; and
(iv) Other design criteria such as regularity, approximation order,
time-frequency localization, symmetry, etc. are also useful for im-
age compression, provided that the multifilters have a GMP order
of at least 1.



CR GHM REG AP T-F SA4(1) SA4(2) SA4(3) D4 D8
32:1 33.58 34.14 34.37 34.01 34.42 34.33 34.47 33.23 34.00

Lena 64:1 30.52 31.23 31.40 31.14 31.46 31.38 31.50 30.24 30.97
128:1 27.75 28.59 28.73 28.54 28.75 28.71 28.78 27.72 28.33
16:1 31.14 31.79 32.06 31.64 32.13 32.02 32.27 30.52 31.67

Barbara 32:1 27.44 28.15 28.23 28.07 28.30 28.23 28.39 27.12 27.86
64:1 24.85 25.49 25.53 25.47 25.30 25.53 25.59 24.71 25.12
16:1 33.65 34.20 34.46 34.09 34.49 34.42 34.55 33.42 33.95

Boat 32:1 30.04 30.68 30.85 30.59 30.87 30.82 30.93 29.98 30.44
64:1 27.37 27.94 28.08 27.85 28.10 28.06 28.12 27.34 27.74
16:1 25.23 25.54 25.59 25.50 25.61 25.58 25.67 25.11 25.43

Baboon 32:1 23.06 23.33 23.36 23.30 23.38 23.36 23.41 22.97 23.18
64:1 21.49 21.68 21.70 21.67 21.72 21.70 21.74 21.49 21.64
16:1 32.51 33.02 33.12 32.96 33.14 33.10 33.18 32.41 32.66

Goldhill 32:1 29.87 30.49 30.58 30.45 30.60 30.57 30.62 29.84 30.09
64:1 27.83 28.45 28.50 28.41 28.52 28.50 28.55 27.80 28.00

Table 2: Comparisons of PSNR values (in dB) of various wavelet filters using different images and compression ratios (CR). Bold entries
indicate the best filters for particular image/CR combinations.
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Figure 1: Magnitude responses of the equivalent scalar filters as-
sociated with different multifilters. Scalar wavelet D8 (maximum
flatness) serves as a reference. It is noted that the two magnitude
responses of GHM are different, whereas the magnitude responses
of each of the other multifilters coincide perfectly [8].
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