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ABSTRACT

This paper present analytical, numerical and experimental

results for a stochastic gradient adaptive scheme which iden-

ti�es a polynomial-type nonlinear system with memory for

noisy output observations. The analysis includes the compu-

tation of the stationary points, the mean square error surface,

and the mean behavior of the algorithm for Gaussian data.

Monte Carlo simulations con�rm the theoretical predictions

which show a small sensitivity to the observation noise.

1. INTRODUCTION

Much research has been performed on the nonlinear system

identi�cation problem for many years. Many methods have

been developed devoted to this task [1, 2].

Recently, Bershad et al. have analyzed the stochastic gra-

dient (SG) adaptive identi�cation of Wiener systems (a li-

near �lter followedbya zero-memorynonlinear function [3])

with noisy input and output measurements. The analytical

results were obtained by modeling a smooth threshold type

nonlinearitywith anErf functionwith input and output sca-

ling factors. Many nonlinear systems can be modeled glo-

ballyusing this famillyof nonlinear functions. However, often

the nonlinear system operates in a small region about a bias

point. It is simpler to study the identi�cation behavior of

these systems using a linear �lter followed by a limited Ta-

ylor series expansion around the bias point. The unknown

system output is obscured by some noise no. The identi�ca-

tion of polynomial-typenonlinear systems withmemorycan

be handled with this model. Identi�cation is performed in

two steps: 1) linear �lter identi�cation using the LMS algo-

rithm, 2) polynomial nonlinearity identi�cation using a SG

algorithm. Since the unknown coe�cients of the polyno-

mial nonlinearity are linearly embedded in the model, LMS

algorithms can be used to identify both the linear and the po-

lynomialcoe�cients. Their statistical behaviors are studied.

Recursions for themeanpolynomialcoe�cients is obtained.

Monte Carlo simulation is provided for 0dB signal to noise

ratio in order to support the theory.

2. SOME PRELIMINARYRESULTS

2.1. Linear �lter estimation

The unknown system structure consists of an N 'th order li-

near time-invariant system H followed by a zero-memory

nonlinearityh(:). h(:) is assumed to be represented by aP 'th

order Taylor expansion (P > 0) f(x; a) around a bias point

(see Figure 1).

This system is a Wiener-type block structure [4]. Con-

sider the identi�cation of a local expansion of the nonline-

arity about the bias point. The input and output sequences,

x and y, are composed of L samples with power �2x and �
2
y

respectively. The output is corrupted by additive noise no

with power �2o . The signals x and no are zero-mean Gaus-

sian processes, independent of each other. Hence,

y(n) = f(z(n); a) + no(n) (1)

with f(x; a) =
PP

k=0 ak x
k. The signal z(n) = HT

X(n)

is the linear �lter output with power �2z ,X(n)T is the input

vector, and aT = [a0 : : :aP ]. The identi�cation goal is to

estimate theN +P +1 parameters ofH and a. A recent pa-
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Figure 1: Adaptive identi�cationscheme

per [3] has shown that the linear partH of the system can be

identi�ed to within a scale factor using the LMS algorithm.

The weight vectorW(n) recursion is given by

W(n+ 1) =W(n) + �eH (n)X(n) (2)

where eH (n) = y(n)�W(n)TX(n). Let E [x] denote the

expectation of x. The statistical analysis results for slow le-

arning (small�) are summarized here [3] and applied to this

problem. The LMS mean weight vector E [W(n)] conver-

ges to the optimumWiener �lter Ĥ, i.e.

lim
n!1

E [W(n)] = �H = Ĥ (3)

where � = E
h
(@f(x; a)=@xjx=z(n)

i
. The value of � de-

pends on H and a (both unknown parameter sets) through

the function f(x; a). Evaluating�withx = z(n) = HT
X(n)

for a Gaussian random variable x, yields

� =

b(P�1)=2cX
k=0

a2k+1(2k + 1)(2k � 1)!!�2kz (4)

where bkc stands for the smallest integer near k. The weight

vectorW(n) displays uctuations around its mean, i.e. mi-

sadjustment error. This leads to some problems for the ana-

lysis of the nonlinearity learning. For instance, the output

ẑ(n) is given by ẑ(n) = W(n)TX(n). This is somewhat

di�erent from E [ẑ(n)] = Ĥ
T
X(n) = �HT

X(n). Ne-

vertheless, under the slowconvergence hypothesis (small�),

the output ẑ(n) can be written approximately as [3]

ẑ(n) � �(n)HT
X(n) (5)

where �(n) = � (1 � (1 � ��2x)
n). �(n) converges to-

wards � as n goes to in�nity. ẑ(n) converges towards a sca-

led version of the output of the �lterH. The asymptotic u-

ctuation behavior can be computed using the results in [3].

The Wiener mean square error (MSE) �H is given by �H �

�2o + E
�
f2 (z(n); a)

�
� �2�2z where the uctuation beha-

vior ofW is neglected. Let VH (n) = W(n) � Ĥ be the

weight error about the optimumWiener �lter. It is shown in

[3] that

lim
n!1

tr
�
VH(n)VT

H (n)
�

=
�

(2� (N + 2)��2x)

�
�
N�H + �2z �

�
(6)

with � = (2 +B) � 2�
�
2�+ �2zA

�
. The � factor takes

into account the e�ect of the nonlinearity. Equation (6) in-

dicates that the uctuations are proportional to � for any f .

Hence, the approximation in �H is valid for small�. The fa-

ctorsA andB in� (introduced in [3]) can be evaluated using

Bussgang's Theorem. The MSE in the linear �lter learning

phase is given by

E
�
e2H(n)

�
= �H + �2xtr

�
VH (n)VT

H (n)
�

(7)

If f(z; a) = z, then the MSE reduces to E
�
e2H (n)

�
= �2o

because A = 0, B = 2, and � = 1. If � is chosen small,

theMSE in equation (7) is dominated by �H . Thus, the MSE

depends only on the shape of the nonlinearity and not on the

adaptive learning process. The nonlinear contribution to the

misadjustment error is due to �.

2.2. Scaling property for the nonlinearity

The parameter vector a is unknown. Thus,� is alsounknown.

It is not possible to identify � and a independently. Indeed,

denoting ZT = (1; z; z2; : : : ; zP ), we can write f(z; a) =

a
T
Z. f(z; a) is identi�ed using a similar polynomial-type

function f(ẑ; â) (see Figure 1) given by f(ẑ; â) =
PP

k=0 âk ẑ
k

with âT = (â0; â1; â2; â3). Introduce the diagonal matrix

G = diag(1; �; : : : ; �P ) composed of the P + 1 powers of

�. Using equations (5), and the matrixG, f(ẑ; â) be rewrit-

ten approximatly as f(ẑ; â) � âT GZ = f(z;Gâ). Perfect

identi�cation occurs when f(ẑ; â) = f(z; a), and thus â =



G�1a. This implies only âT = (a0; a1=�; : : : ; aP=�
P ) can

be estimated. Thus, it is impossible to identify � and a in-

dependently.

3. LEARNING THE NONLINEARITY

3.1. Global stationary points

The N coe�cients of the linear part of the model Ĥ have

been estimated in section 2.1. Now the P + 1 parameters a

are estimated using a stochastic gradient learning algorithm.

The estimate of a, â, converges in some statistical sense to-

wards the minimumof the mean square error surface [5]

�f = E
�
e2f (n)

�
= �f (a) (8)

The residual error ef (n) is now given by ef (n) = y(n) �

f(ẑ(n); â) or by

ef (n) � (a�Gâ)T Z(n) + no(n) (9)

where Ẑ is approximated by GZ. The parameter vector â is

not time dependent. Equation (8) de�nes a P + 1 dimen-

sional surface. De�ne the parameter deviation vector Vf =

â�G�1a, and assuming that no(n) and Z(n) are indepen-

dent, equation (8) for the MSE surface becomes

�f = �2o +V
T
f E [Q(n)]Vf (10)

where Q(n) = [Ẑ(n)][Ẑ(n)]T � [GZ(n)][GZ(n)]T is a

square semi-de�nite positive symmetric real valued matrix.

Equation (10) de�nes a P + 1 quadratic error surface. This

surface is elliptic and possesses a unique globalminimumat

V
�
f = 0. The stochastic gradient algorithmwill converge to

this minimumunder some stability conditions. The matrix

E [Q(n)] plays the role of the input vector covariancematrix

R in standard linear LMS theory [5].

3.2. Stochastic gradient algorithm

LMS is often used for adapting the parameters of a linear

tapped delayed line. It is also widely used for signal pro-

cessing and system identi�cation [5]. The LMS is also used

here to estimate the coe�cient vector a (more precisely a

scaled version). The adaptive gradient recursion for â is

â(n + 1) = â(n)�
M

2
r
â(n) e

2
f (n) (11)

where M = diag(�0; : : : ; �P ) is a diagonal matrix of po-

sitive real adaptive coe�cients (step sizes). M is usually a

scaled identity matrixM = �I, where � is a scalar. The

change in the parameter âk(n) in equation (11) depends on

z(n)k (see equation (12)). The kth component of â is pro-

portional to �2kz . A diagonal step-size matrix allows for the

selection of an optimal step-size for âk. The stochastic gra-

dient recursions can be rewritten as

â(n + 1) = â(n) + ef (n)M Ẑ(n) (12)

Not surprisingly, the recursions for â(n) are linear be-

cause f is linear in a (or equivalently �f is quadratic inVf ).

The equation (12) is used to learn a after the �lter coe�-

cients Ĥ have been computed. Hereafter, themean behavior

of (12) is studied.

4. MEAN BEHAVIOR OF (12)

Somebasic statistical properties of the set fẑ(n); y(n); âk(n)

; no(n)g are usually assumed in order to simplify the analy-

sis problem. For example ẑ(n), âk(n) and no(n) are assu-

med mutually independent random variables. This is often

not true. However, this assumption has provided reasonable

stability conditons for stochastic gradient algorithms. The

approach here is based upon this independence assumption.

This section derives the mean polynomial parameter recur-

sions. These recursions predict the behavior of (12) in some

statistical sense. The recursion for the vector Vf (n) is

Vf (n+1) = (I �MQ(n))Vf (n)�no(n)M Ẑ(n) (13)

Taking the expectation of both sides of equation (13), and

using the independence assumption,

E [Vf (n+ 1)] = E [T (n)]E [Vf (n)] (14)

where T (n) = I �MQ(n). Equation (14) is linear in the

P +1 deviation vectorE [Vf (n)]. The stationary points are

the solution of E [Vf (n+ 1)] = E [Vf (n)]. This solution

is given by E [Vf (n)]
� = 0, and is also the minimumpo-

int of the MSE surface (see equation (10) and comments be-

low). Equation (14) is similar to the standard LMS result for

the mean weight vector (see for example [6] p. 102). Ho-

wever, note that the matrix E [T (n)] is not symmetric be-

causeM andE [Q(n)]do not commute. ThematrixE [T (n)]



is usually denoted the transitionmatrix. The solution to (14)

leads to

E [â(n)] = E [T (n)]nE [Vf (0)] +G�1 a (15)

The matrix G�1 always exists because � 6= 0. The initial

condition â(0) = 0 leads toE [Vf (0)] = �G�1a. Conver-

gence of themean implies limn!1E [Vf (n)] = E [Vf (n)]
� =

0.

5. NUMERICAL STUDIES

Monte Carlo simulationsare presented for both the linear �l-

ter learning (2) and the nonlinear polynomial coe�cient le-

arning (12). Theoretical mean behaviors (5) and (15) of (2)

and (12) respectively are compared with Monte Carlo simu-

lations for a 0dB signal to noise ratio. P is chosen equal to

3 (third order polynomial nonlinearity) andN = 5 (�fth or-

der linear �lter). The input power has been �xed at �2x = 4.

Equation (4) gives � = a1 + 3a3(HTH)�2x. 100 Monte

Carlo runs have been performed for this simulation. The li-

near �lter learning gain was �xed at � = 0:0005. The step-

size coe�cients were �xed at �0 = 0:01, �1 = 0:005,�2 =

0:0005 ,�3 = 0:00005. Figure 2 shows the Monte Carlo

simulation on the left and the theoretical prediction on the

right.
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Figure 2: Monte Carlo simulation (left pannel) and theoretical

prediction(rightpanel)of (12),SNR=0dB

The constant lines in the two �rst graphics show the �rst

three linear �lter weightsWi(n)=�. The theoretical value of

� has been used to verify equation (4). The scaled weights

Wi(n)=� converge toH. The theory agrees with the Monte

Carlo simulations. On the two second graphics, the time va-

rying curves show the four polynomial coe�cient learning

curves âi(n). Each coe�cient âi(n) converge to ai=�
i and

the theoretical curves match Monte Carlo simulations. The

converged coe�cient values are in very good agreementwith

the theoretical values. The polynomialcoe�cient uctuations

are smaller then those ofW(n).

6. CONCLUSIONS

This paper has investigated the identi�cation of a Wiener-

type nonlinear system using adaptive stochastic gradient al-

gorithms. The nonlinearitywas assumed to be locallyexpan-

dable in a Taylor series. The linear and nonlinear polyno-

mial parameters have been identi�ed separately using LMS.

Analysis has been performed for the mean behavior of the

LMS algorithms for both linear and nonlinear coe�cients.

Monte Carlo simulationhas con�rmed the theoretical predi-

ctions.

Finally, this type of adaptive nonlinear system identi�ca-

tion could be useful when no apriori knowledge is provided

for the class of nonlinearities.
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