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ABSTRACT

In this paper, the blind channel identification problem is
formulated in a stochastic state space framework. Start-
ing from a state space model we present a preprocessing
step based on two orthogonal subspace projections. Us-
ing these orthogonal projections, we derive an algorithm for
blind channel estimation which is insensitive to the spatial
color of the noise. The performance of this new algorithm
is demonstrated through simulation examples.

1. INTRODUCTION

Blind channel identification based on second order statis-
tics or equivalent deterministic properties has been an ac-
tive area of research during the last years [2]. Most algo-
rithms developed up till now assume that the additive noise
is spatially white or that the spatial covariance of the noise is
known. An exception is [1], in which the original subspace
algorithm [3] is modified to cope with noise of unknown
spatial covariance. For a proper operation of the algorithm
[1] it is required that the number of observation channels
exceeds two and that the channel order exceeds one.
Here we present a new stochastic subspace algorithm for
blind channel identification. The algorithm is based on the
concept of orthogonal projections and is closely related to
the theory of [4]. It has the same restrictions for the num-
ber of channels and the channel order as the algorithm [1].
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However, simulation results show that the new algorithm
has a better performance than the algorithm of [1]. The
main contribution of this paper lies in the application of the
stochastic subspace ideas of [4] to the blind identification
problem.

2. DATA MODEL

Consider the following single input-M output channel model:

yk = [ hL : : : h0 ]

2
64 x[k � L]

...
x[k]

3
75+ nk (1)

Hereyk represents the channel output vector at timek, i.e.
the outputs ofM receiving antennas. The channel input
is denoted asx[k] and the vector FIR channel ashk. The
noise vectornk is assumed to be temporally white but can
be spatially colored.
First we rewrite the data model of equation 1 into a forward
and backward stochastic state space model.

2.1. Forward state space model

Define the state vectorxk =
�
x[k � L] � � � x[k � 1]

�
then we obtain the following state and output equation

xk+1 = A � xk + eL � x[k]| {z }
wk

yk =
�
hL � � � h1

�| {z }
C

�xk + (h0 � x[k] + nk)| {z }
vk

whereA is a matrix which has unit entries on its first super
diagonal and zero entries everywhere else, andeL is the last
column of theL � L unity matrix. The (unknown) input
signal is treated as a random binary white noise sequence.
The conditions under which this data model is minimal (i.e.
both observable and controllable) will be detailed in the next
section.



2.2. Backward state space model

Define the state vectorzk =
�
x[k � L+ 1] � � � x[k]

�
then we obtain the following state and output equation

zk�1 = AH � zk + e1 � x[k � L]| {z }
wb

k

yk =
�
hL�1 � � � h0

�| {z }
GH

�zk + (hL � x[k � L] + nk)| {z }
vb
k

with e1 the first column of aL� L unity matrix. Note that
zk equalsxk+1.

3. ORTHOGONAL PROJECTIONS

We construct the following two block Hankel matrices, called
’past outputs’ and ’future outputs’ and respectively denoted
asYp andYf :

Yp = Y1ji =

2
4 y1 � � � yj

...
...

yi � � � yj+i�1

3
5

Yf = Yi+1j2�i =

2
4 yi+1 � � � yj+i

...
...

y2�i � � � yj+2�i�1

3
5

The subscripts refer to the time indices in the first column
(the number of columns is always fixed toj). Further define
theM � i� (L+ i) matrixHi:

Hi =

2
4 hL � � � h0

.. .
. ..

hL � � � h0

3
5

andX1�Lji as:

X1�Lji =

2
4 x[1� L] � � � x[j � L]

...
...

x[i] � � � x[i+ j � 1]

3
5

then,

Yp = Hi �X1�Lji +Np

Yf = Hi �Xi+1�Lj2�i +Nf

withXi+1�Lj2�i defined similarly asX1�Lji andNp,Nf de-
fined in a similar way asYp andYf . For the derivations to
follow we make the following assumptions:

H1 Hi has full column rank fori � L.

H2 j ! 1. This allows to apply stochastic properties of
the data model.

H3 Source symbols are uncorrelated, i.e.Efx[k] � x[l]g =
�kl and noise and symbols are uncorrelated.

H4 The forward and backward state space models are both
observable and controllable.

We first show that assumption H1 automatically implies H4.
For the forward state space model we define the extended
observability matrix�i:

�i =
�
C C � A � � � C �Ai�1

�T
= Hi(:; 1 : L) (2)

The pairfA;Cg is observable if�i has full column rank,
which is clearly the case under assumption H1. Straight-
forward calculation also yields that the pairfA;Q1=2g is
controllable (i.e. that all dynamical modes of the system are
excited by the (unknown) input signal):

rank(
�
Ai�1 �Q1=2 � � � A �Q1=2 Q1=2

�
) = L

with Q:

Q = Efwk �wk
Hg =

�
0L�(L�1) e1

�
Similar expressions can be derived for the backward model.
We now define a number of orthogonal projections. Similar
to [4], we orthogonally project the future outputsYf onto
the past outputsYp, then under the assumptions H2 to H4:

Oi = (Yf=Yp) = Yf � Y
H
p � (Yp � Y

H
p )y � Yp

= �i � X̂i+1�Lji (3)

This equation is valid whatever the spatial color of the noise,
and represents a rankL model as will now be explained.
�i is a block upper triangular, block Toeplitz matrix as de-
fined in equation 2:

�i = Hi(:; 1 : L) =

2
664
hL � � � h1

. ..
...
hL

0 � � � 0

3
775

X̂i+1�Lji contains the non-steady state Kalman filter state
estimates of the exact state sequence

�
xi+1 � � � xi+j

�
of the forward stochastic model [4], i.e.

X̂i+1�Lji =
�
x̂i+1 � � � x̂i+j

�
(4)

Now we make a number of important remarks concerning
X̂i+1�Lji:

� The matrixX̂i+1�Lji will be approximately Hankel. The
Hankel structure will be better approximated whenever the
noise level decreases.
� ComputingX̂i+1�Lji from an orthogonal projection can
be viewed as generating a state sequence by a bank of non-
steady state Kalman filters working in parallel on each of
the columns of the block Hankel matrix of past outputsYp,
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Figure 1: Kalman filter state estimates based uponi mea-
surements ofyk. If the system matrices were known, the
statex̂i+q could be determined from a Kalman filter as fol-
lows: Start the filter at timeq, with an initial state estimate
0. Now iterate the Kalman filter overi time steps (the verti-
cal arrow down). The Kalman filter will then return a state
estimatêxi+q. This procedure could be repeated for each
of thej columns, and thus we speak of abankof Kalman fil-
ters. The observation here is that the system matrices do not
have to be known to determine the state sequenceX̂i+1�Lji.
It can be determined directly from the output data, see [4].

see [4] and figure 1. The bank of Kalman filters runs in a
vertical direction (over the columns). They thus only use
partial input-output information: i.e. the Kalman filter gen-
erating the estimate of̂xi+q will only usei output measure-
mentsyq; : : : ;yi+q�1 instead of all the output measure-
mentsy1; : : : ;yi+q�1. x̂i+q is thus the optimal one-step-
ahead predicted state given the measurements of the outputs
yq; : : : ;yi+q�1.
Similarly we project the past outputs onto the future out-
puts:

Bi = (Yp=Yf ) = Yp � Y
H
f � (Yf � Y

H
f )y � Yf

= �H
i �

^̂
X i+1�Lji (5)

In this last equation�i is the reversed extended stochastic
controllability matrix:

�H
i =

�
Ai�1 �G Ai�2 �G � � � G

�H

= Hi(:; i+ 1 : L+ i) =

2
6664

0 � � � 0
h0
...

...
hL�1 � � � h0

3
7775

Hi(:; i+1 : L+ i) is block lower triangular, block Toeplitz

and contains the lastL columns ofHi.
^̂
Xi+1�Lji equals

^̂
Xi+1�Lji =

�
ẑi � � � ẑi+j�1

�
=

�
^̂xi+1 � � � ^̂xi+j

�
(6)

Hereẑi+q is the optimal one-step-backward predicted state
given the measured outputsyi+q+1,: : : ,y2�i+q. The matrix

^̂
X i+1�Lji will only be approximately Hankel. The matrices
^̂
X i+1�Lji and X̂i+1�Lji form estimates of the same row
spaceXi+1�Lji. However, the two estimates will only co-
incide (and be exact) in the noiseless case.
An interesting feature of orthogonal projections is that they
can be computed efficiently using a LQ decomposition, see
[4].
Note thatBi andOi will contain exactlyM � L nonzero
rows, this thus provides a way to estimate the channel order
L. From here on we drop the zero rows and redefineOi and
Bi as:

Oi  Oi(1 : L �M; :)

Bi  Bi((i� L) �M + 1 : i �M; :)

From now on we will thus assume thati = L.
In the next section we present an algorithm that estimates
the channel coefficients from both orthogonal projections.
Since neither of the two projection equations contain all
channel parameters, the two projections will have to be com-
bined.

4. ALGORITHM

First we compute the matricesOi andBi+L by performing
the appropriate orthogonal projections and add the results:

Oi + Bi+L = Yi+1j2�i=Y1ji + YL+1jL+i=Yi+L+1j2�i+L

=
�
HL(:; 1 : L) HL(:; L+ 1 : 2 � L)

�| {z }
HL

�

"
X̂i+1�Lji
^̂
X i+1ji+L

#

Since the matrix
h
X̂i+1�Lji

^̂
Xi+1ji+L

iT
has full row

rank, the matricesOi + Bi+L andHL share the same col-
umn space. Theorem 2 of [1], which is repeated below, then
points out under which conditions, the channel parameters
can be uniquely determined from this column space.

Theorem 1 If M � 3, L � 2 and the assumptions H1-H3
hold, then the equation

UH
n � HL = 0 (7)

uniquely determines the channel[h0 : : :hL] (up to a scaling
factor).Un is the left null space ofHL.

The left null space ofHL, can be computed from the SVD of
Oi+Bi+L. The channel parameters can then be retrieved by
rewriting equation 7 as a function of the channel parameters
and solving the problem using e.g. a quadratic non-triviality
constraint, as in [3].
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Figure 2:MSE for varying burst length, SNR = 0 dB (left), MSE for varying SNR,N = 1000 (right)

5. SIMULATION RESULTS

We simulate with a randomly generated (complex) channel
of order 3: �

hL : : : h0
�
="

0:11 + 1:11i �1:21� 0:61i 0:07� 0:83i �1:26 + 0:77i
0:55 + 0:38i 0:77� 0:38i �0:58 + 0:41i �0:19 + 0:19i
0:58 + 1:72i �0:18� 1:27i 0:77 + 1:21i �1:01 + 0:33i

#

soM = 3, L = 3. The modulation format is BPSK and the
SNR is defined as:

SNR = 10 � log10
Efk

PL
r=0 hr � x[k � r]k

2g

Efknkk2g

The noise covariance matrixRn is defined as:

Rn = �2 �B �BH with B =

2
4 1 0:7 0:72

0:7 1 0:7
0:72 0:7 1

3
5

As a performance measure we use the mean square error of
the channel estimate:

MSE = Ef
kH � Ĥk2F
kHk2F

g

wherek � kF denotes the Frobenius norm. In all simula-
tions we assume that the channel order is known and choose
i = L. We compare the performance of our algorithm with
algorithm [1], from now on referred to as respectively algo-
rithm 1 and 2.
In a first simulation we investigate the influence of the burst
lengthN on the performance of the two algorithms. The
SNR was fixed to 0 dB. The lhs of figure 2 shows the results.
For the new algorithm 1, the MSE decreases more rapidly
with increasing burst length than for the original algorithm
2. In all situations algorithm 1 outperforms algorithm 2.

Next we vary the SNR and keep the burst length fixed at
N = 1000. The rhs of figure 2 shows the results. Except
for the lowest SNR, the noise level influences the MSE of
both algorithms in an equal way.

6. CONCLUSIONS

In this paper we have presented a new blind equalization
algorithm based on a stochastic state space description of
the data model and orthogonal subspace projections. The
algorithm is robust to the spatial color of the noise. The
algorithm is similar to the algorithm of [1] but has better
performance. Other algorithms combining the two orthogo-
nal projections in a different way are the subject of current
research.
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