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ABSTRACT and the results are therefore comparable with the rectangu-

Gabor's expansion of a signal on a quincunx lattice lar case [4]. In this paper we extend this idea of the con-
with oversampling by a rational factor is presented for nection between the Gabor transform and the modified Zak

continuous-time signals. It is shown how a modified Zak transform to the case of oversampling with a rational factor.

transform instead of the ordinary Zak transform can be help-

fulin determining Gabor’s signal expansion coefficients and 2. GABOR'’S SIGNAL EXPANSION

how it can be used in finding the dual window. Furthermore,

some examples of dual windows for the quincunx case areThe discrete set of shifted and modulated versions of the

given and compared with dual windows for the rectangular elementary signaj(¢) on a rectangular lattice reads
case.

gmi(t) = gt — maT)ejkBQt Q)

1. INTRODUCTION . _ : .
where the time shift'7 and the frequency shift(2 satisfy

The case of Gabor’s signal expansion on a rectangular latthe relationship®)T" = 2r anda8 = ¢/p < 1, wherep

tice and its connection with the Zak transform has been@ndg are positive integerg; > ¢ > 1, and wheren andk
studied extensively (see, e.g., [1] and [2]). Recently, the May .take al! integer values.. Gabor’s expansion of a signal
connection between Gabor’s signal expansion on a quin-‘P(t) into a discrete set of shifted and modulated versions of
cunx lattice, a sampling geometry which is different from @n elementary signgl¢) on a rectangular lattice reads

the traditional rectangular sampling geometry (see Fig. 1),

and the ordinary Zak transform has been shown [3]. In the p(t) = Z amkgmk(t), (2)
mk
w
. . . . . . Where
ot I Ak =<P, Ymk>= / Q1) Vi (1) dt ®)
aT
. . . . . . . ot with 7., (t) the shifted and modulated versions of the dual
. . . . . . window «(¢) [cf. (1)]. Combining (2) and (3) yields the
. . . . . . . . condition [2]
. . . . . . T
Zg(t —maT)y* (t + kg - maT) = gé[k], (4)
Figure 1: The quincunx lattice whered[k] is a Kronecker delta, with[0] = 1 andd[k] = 0

for k # 0.
case of critical sampling one obtains then a sum-of-products  The Fourier transforma(z, y) of an arrayu.,, is defined
form instead of a simple product form which appears in according to

the rectangular case. It is also possible to use a modified
Za_lk transfqrm. With this mc_)qmed Zak _transform one ob- a(z,y) = Z Zamke—jQﬁ(my—kw) (5)
tains then in the case of critical sampling a product form :

m



and the Zak transforni (¢, w; 7) of a signaly(t) is defined
as
o(t,w;T) = Z o(t +mr)e ImeT,

m

(6)

Using the Fourier transform and the Zak transform, it was

It has been shown [4] that in the case of critical sampling the
following product can be derived from the condition (10)

T 20, T 20,
Tg(xg,yz;gaT,l)’y (wga?J;;gaTa 1) =8,

shown that (2) and (3) can be transformed into the sum-of-yith 4,3 = 2, which is almost identical with the well-known

products forms [2]
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respectively, where: extends over an interval of length
1 andy over an interval of lengti /p. The expressions
s =< ¢ > andr =< p > are used as short-hand notations
for an interval ofg andp successive integers, respectively.

3. GABOR'’S SIGNAL EXPANSION ON A
QUINCUNX LATTICE

In the case of a quincunx lattice (see Fig. 1) we still have (2)
and (3) but now we have a different discrete set of shifted

and modulated versions gft) and~(t)

L1+ (=1)™H)g(t — %maT)ejk%ﬁQt
LA+ (=)™t — %maT)ejk%ﬁQt. 9)

Imk (t) =
TYmk (t) =

The time shift%aT and the frequency shifiQ) satisfy the
relationship€2T" = 2r andia3 = ¢/p < 1, wherep and
q are positive integerg, > ¢ > 1.

After some manipulation we get the condition [cf. (4)]
g

Z 5Tk

Z(—l)mkg(t — tmaT)y*(t — k% — tmaT) = T

m

(10)
At this point we write

;T

L ST 2 _ . m 2.2 - 7w 1,22
(_1)mk — el mpa(matkp)” —igam™e” =i kP

and make use of a modified Zak transfoftt, w; 7, C') of
a signaly(t), with C a constant equal to 1 gr, defined as

[ct. (6)]
Plt,w;m,C) = Y p(t + mr)e I H O emimer - (11)

m

product form of the rectangular case as already mentioned.
It is also possible to use the ordinary Zak transform; how-

ever then we obtain a sum-of-products form instead of a
product form [3].

We remark that, compared to the ordinary Zak trans-
form (6), an additional phase fact@ascp[—jg—’;(Cm)z]
arises in the definition of the modified Zak transform (11).
Moreover, we remark that the modified Zak transform
p(t,w; T, C) is periodic in the frequency variable with
periodQ} = 27 /7 and gquasi-periodic in the time variahie
with a period which depends a@n in particular we have to
treat the casegis even and odd differently.

In the case thaj is even, we can derive from this condi-
tion (10) the matrix product

«_ DB
GIr*" = —1I 12
- (12)
with G° ag x p matrix with elements
~ AT s 29
G =3 (o +i) g+ kfp+i/2 23T 1),
with I'® ag x p matrix with elements
~ AT L 29
Lo =7 ((235 + Z)Ea (y+k/p+ 1/2)3; saT, 1) ,
and withI, theq x ¢ identity matrix.
In the case thaj is odd we have
2
GT" = %ﬁbq, (13)
with G° a2q x 2p matrix with elements
~ N 1Y)
G% =7 ((23: + z)g, (y+k/2p+ 1/2);; zaT, 1)
andI'’ a2q x 2p matrix with elements
~ N s 29
% =7 <(2:U + z)g, (y+k/2p+ z/2);; 1aT, 1> .

By using the Fourier transform, as defined in (5), of
the arraya,,; multiplied by an additional phase factor
exp(j%mZ) and by using the ordinary and modified Zak
transforms, as defined in (6) and (11), it can be shown that

a(z,y) = Z [amkej%nﬁ} e—i2m(my—ke)

mk



can be transformed into the sum-of-products forms

a‘(z,y +r/p) =
T T 20
EZ@ < 2x+z)§ ,(y+i/2)— ,2paT p)
=0
<2w+z %,(y+r/p+i/2)%,%aT, 1>
(14)
in the case thaj is even and
a’(z,y +r/2p) =
2q 1
T . Q
ﬁ Z <2x+z 7 ZyE,paT>
~ A o 29
xy* <(2x+z)ﬁ,(y+r/2p+z/2)z; 1aT, 1>
(15)

in the case thag is odd, wherer extends over an interval
of length 1 andy over an interval of length /p and1/2p,

and

= [@S(xay),cpT(x,y)a--.7@gq—1(x,y)]T7 (21)

respectively.

With the help of these vectors and matrices, Egs. (14)
and (15) can now be expressed in the elegant matrix-vector
products

T
e L 22
gle (22)
and T
a’ = =T p°. 23
Floe (23)

The relations (12) and (13), applied to the arbitrary vec-
torsp® andy?, respectively, lead to the conditions

pB

respectively. Notice that in the latter expression the ordinary Substitution of (22) into (24) yields

Zak transform appears.

The Fourier transformu®(z,y) is completely deter-
mined by thep functionsal(z,y) = a®(z,y + r/p) in the
case that is even, andi®(z, y) is completely determined
by the2p functionsa®(z,y) = a°(z,y + r/2p) in the case
thatq is odd. Thep functionsa?(z,y) and the2p functions
a’(z,y) can be combined intp- and2p-dimensional col-
umn vectors of functions

a® = [ag(a:,y),a‘{(x,y),...,a;_l(x,y)]T (16)
and

a’ = [ag(x,y),af(x,y),...,agp,l(x,y)]T, (17)
respectively.

The (modified) Zak transforms(Q:n L,y 2L " 2paT D)

andgo(Qa:E, QyE,paT) are completely determlned by the
functions
i) =6 (2240

and the2q functions

%, (y + iﬂ)%; spaT, p> (18)

. A 2Q
etlon) = (o4 )5 0+ i) 2 paT) . @9
respectively.

The ¢ and 2q functionsy$ (z,y) and ¢?(z,y) can be
combined intog- and 2¢-dimensional column vectors of
functions
(20)

= [@8(%.@),@;(9«”,11), s '730;71(‘Tay)]T

GT" " =70 (24)
and 3
* 2p
0:[10 — o 2
G P (25)
1
¢° = -Ga’, (26)
p
and substitution of (23) into (25) yields
1
p° = —G’°. (27)
2p

Note that (22) representsequations ang unknowns,
(23) represent8p equations an@dq unknowns, (26) repre-
sentsq equations angh unknowns and (27) represeritg
equations an@p unknowns. In the case of oversampling
(p > q > 1) the latter two sets of equations are thus under-
determined.

4. EXAMPLE

In this section we determine some dual windoys) for
the given Gaussian window(t) = 21/4T~1/2¢==(t/T)’
with ||g|| = 1, and compare the dual windows for the quin-
cunx case with the dual windows for the rectangular case.
As a measure we take tiHe, norm of the difference of the
dual window~y(¢) and the optimum dual windowy,,. (t),
which is proportional to the window(t), thus we deter-
mine ||y — cg||. One can show that this norm has a min-
imum if ¢ = 2aB/||g||? in the case of the quincunx lattice
and ifc = a3/||g||? in the case of the rectangular lattice.

For this Gaussian windoy(t) it is shown that the opti-
mal choice isx = g for the rectangular lattice [5]. It is not
difficult to show that the optimal choice is = /3 for the
quincunx lattice.
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Figure 2: The dual windows (solid line) of a Gaussian ele-
mentary signa(t) = 2372 exp(—=(t/T)2) and the op-
timum windowsy,,,, (¢) (dotted line) for different values of
oversampling, and the difference of the dual window and
the optimum dual window in thé, norm sense in the case
of the quincunx lattice:

1243 5= L/3a,p/q = T7/6, ||y — Yopt|| = 0.3191
)=/ 542, 5= $vAa,p/a = 3/2 |11 — ope] = 0.1092
©a= \/@ B=%v3a,p/q="5/2,[7 — Yopt|| = 0.0105
@a =52, 5= 1vaa,p/a=7/2 |1 — topel = 0.0012

@a=

In Fig. 2 we have depicted the dual windows;¢f) and
the optimum dual windows,,, (t) for several choices af
and g for the quincunx lattice. In Fig 3 we have depicted
the same for the rectangular lattice.

From this example we can conclude that the dual win-
dows for the quincunx lattice for different values of over-

sampling are better in the sense that the dual windows re-

semble better the optimal dual windows in thesense for
this Gaussian windowy(t).

5. CONCLUSIONS

We presented Gabor’s signal expansion on a quincunx lat-

tice and its relation with a modified Zak transform. It is

shown that the modified Zak transform can be used to de-

termine Gabor’s expansion coefficients and to find the dual
window.

In some cases the Gabor’s signal expansion on a quin
cunx lattice is better in the sense that the dual window re-
sembles better the optimal dual window in the sense.
This is demonstrated for a Gaussian window.
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Figure 3: The dual windows (solid line) of a Gaussian ele-
mentary signa(t) = 23T~ = exp(—n(¢/T)?) and the op-
timum windowsy, (¢) (dotted line) for different values of
oversampling, and the difference of the dual window and
the optimum dual window in thé, norm sense in the case
of the rectangular lattice:

@a=8=/6/T,p/a="T/6,|17 — Yopt|| = 0.3415
(0)a =B =/2/3,p/a=3/2, 1|7 — Yopt|| = 0.1299
©a=p8=1/2/5,p/a="5/2 1|7 — Yopt|| = 0.0158
(d)a=8=/2/T,p/a="T/2 |l — Yopt|| = 0.0023
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