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ABSTRACT

Gabor’s expansion of a signal on a quincunx lattice
with oversampling by a rational factor is presented for
continuous-time signals. It is shown how a modified Zak
transform instead of the ordinary Zak transform can be help-
ful in determining Gabor’s signal expansion coefficients and
how it can be used in finding the dual window. Furthermore,
some examples of dual windows for the quincunx case are
given and compared with dual windows for the rectangular
case.

1. INTRODUCTION

The case of Gabor’s signal expansion on a rectangular lat-
tice and its connection with the Zak transform has been
studied extensively (see, e.g., [1] and [2]). Recently, the
connection between Gabor’s signal expansion on a quin-
cunx lattice, a sampling geometry which is different from
the traditional rectangular sampling geometry (see Fig. 1),
and the ordinary Zak transform has been shown [3]. In the
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Figure 1: The quincunx lattice

case of critical sampling one obtains then a sum-of-products
form instead of a simple product form which appears in
the rectangular case. It is also possible to use a modified
Zak transform. With this modified Zak transform one ob-
tains then in the case of critical sampling a product form

and the results are therefore comparable with the rectangu-
lar case [4]. In this paper we extend this idea of the con-
nection between the Gabor transform and the modified Zak
transform to the case of oversampling with a rational factor.

2. GABOR’S SIGNAL EXPANSION

The discrete set of shifted and modulated versions of the
elementary signalg(t) on a rectangular lattice reads

gmk(t) = g(t�m�T )ejk�
t (1)

where the time shift�T and the frequency shift�
 satisfy
the relationships
T = 2� and�� = q=p � 1, wherep
andq are positive integers,p � q � 1, and wherem andk
may take all integer values. Gabor’s expansion of a signal
'(t) into a discrete set of shifted and modulated versions of
an elementary signalg(t) on a rectangular lattice reads

'(t) =
X
mk

amkgmk(t); (2)

where

amk =<'; mk>=

Z
'(t)�mk(t) dt (3)

with mk(t) the shifted and modulated versions of the dual
window (t) [cf. (1)]. Combining (2) and (3) yields the
condition [2]

X
m

g(t�m�T )�
�
t+ k

T

�
�m�T

�
=

�

T
�[k]; (4)

where�[k] is a Kronecker delta, with�[0] = 1 and�[k] = 0
for k 6= 0.

The Fourier transform�a(x; y) of an arrayamk is defined
according to

�a(x; y) =
X
m

X
k

amke
�j2�(my�kx) (5)



and the Zak transform~'(t; !; �) of a signal'(t) is defined
as

~'(t; !; �) =
X
m

'(t+m�)e�jm!� : (6)

Using the Fourier transform and the Zak transform, it was
shown that (2) and (3) can be transformed into the sum-of-
products forms [2]
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and
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=
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respectively, wherex extends over an interval of length
1 andy over an interval of length1=p. The expressions
s =< q > andr =< p > are used as short-hand notations
for an interval ofq andp successive integers, respectively.

3. GABOR’S SIGNAL EXPANSION ON A
QUINCUNX LATTICE

In the case of a quincunx lattice (see Fig. 1) we still have (2)
and (3) but now we have a different discrete set of shifted
and modulated versions ofg(t) and(t)

gmk(t) =
1
2 (1 + (�1)m+k)g(t� 1

2m�T )ejk
1

2
�
t

mk(t) =
1
2 (1 + (�1)m+k)(t� 1

2m�T )ejk
1

2
�
t: (9)

The time shift12�T and the frequency shift�
 satisfy the
relationships
T = 2� and 1

2�� = q=p � 1, wherep and
q are positive integers,p � q � 1.

After some manipulation we get the condition [cf. (4)]X
m

(�1)mkg(t� 1
2m�T )�(t� k

T

�
� 1

2m�T ) =
�

T
�[k]:

(10)
At this point we write

(�1)mk = ej
�
2pq

(mq+kp)2e�j
�
2pq

m2q2e�j
�
2pq

k2p2

and make use of a modified Zak transformb'(t; !; �; C) of
a signal'(t), with C a constant equal to 1 orp, defined as
[cf. (6)]

b'(t; !; �; C) =
X
m

'(t+m�)e�j
q�

2p
(Cm)2e�jm!� : (11)

It has been shown [4] that in the case of critical sampling the
following product can be derived from the condition (10)

T bg(xT
�
; y

2


�
; 12�T; 1)b�(xT� ; y

2


�
; 12�T; 1) = �;

with �� = 2, which is almost identical with the well-known
product form of the rectangular case as already mentioned.
It is also possible to use the ordinary Zak transform; how-
ever then we obtain a sum-of-products form instead of a
product form [3].

We remark that, compared to the ordinary Zak trans-
form (6), an additional phase factorexp[�j q�2p (Cm)2]
arises in the definition of the modified Zak transform (11).
Moreover, we remark that the modified Zak transformb'(t; !; �; C) is periodic in the frequency variable! with
period
 = 2�=� and quasi-periodic in the time variablet
with a period which depends onq: in particular we have to
treat the casesq is even and odd differently.

In the case thatq is even, we can derive from this condi-
tion (10) the matrix product

Ge
�
e� =

p�

T
Iq ; (12)

with Ge aq � p matrix with elements

Ge
ik = bg�(2x+ i)

T

�
; (y + k=p+ i=2)

2


�
; 12�T; 1

�
;

with �e aq � p matrix with elements

�eik = b �(2x+ i)
T

�
; (y + k=p+ i=2)

2


�
; 12�T; 1

�
;

and withIq theq � q identity matrix.
In the case thatq is odd we have

Go
�
o� =

2p�

T
I2q ; (13)

with Go a2q � 2p matrix with elements

Go
ik = bg�(2x+ i)

T

�
; (y + k=2p+ i=2)

2


�
; 12�T; 1

�

and�o a2q � 2p matrix with elements

�oik = b�(2x+ i)
T

�
; (y + k=2p+ i=2)

2


�
; 12�T; 1

�
:

By using the Fourier transform, as defined in (5), of
the arrayamk multiplied by an additional phase factor
exp(j q�2pm

2) and by using the ordinary and modified Zak
transforms, as defined in (6) and (11), it can be shown that

�a(x; y) =
X
mk

h
amke

j q�
2p
m2
i
e�j2�(my�kx)



can be transformed into the sum-of-products forms

ae(x; y + r=p) =

T

�

q�1X
i=0

b'�(2x+ i)
T

�
; (y + i=2)

2


�
; 12p�T; p

�

�b��(2x+ i)
T

�
; (y + r=p+ i=2)

2


�
; 12�T; 1

�
(14)

in the case thatq is even and

ao(x; y + r=2p) =

T

�

2q�1X
i=0

~'

�
(2x+ i)

T

�
; 2y




�
; p�T

�

�b��(2x+ i)
T

�
; (y + r=2p+ i=2)

2


�
; 12�T; 1

�
(15)

in the case thatq is odd, wherex extends over an interval
of length 1 andy over an interval of length1=p and1=2p,
respectively. Notice that in the latter expression the ordinary
Zak transform appears.

The Fourier transformae(x; y) is completely deter-
mined by thep functionsaer(x; y) = ae(x; y + r=p) in the
case thatq is even, andao(x; y) is completely determined
by the2p functionsaor(x; y) = ao(x; y + r=2p) in the case
thatq is odd. Thep functionsaer(x; y) and the2p functions
aor(x; y) can be combined intop- and2p-dimensional col-
umn vectors of functions

ae = [ae0(x; y); a
e
1(x; y); : : : ; a

e
p�1(x; y)]

T (16)

and

ao = [ao0(x; y); a
o
1(x; y); : : : ; a

o
2p�1(x; y)]

T ; (17)

respectively.
The (modified) Zak transformsb'(2xT� ; y 2
� ; 12p�T; p)

and~'(2xT� ; 2y


� ; p�T ) are completely determined by theq

functions

'ei (x; y) = b'�(2x+ i)
T

�
; (y + i=2)

2


�
; 12p�T; p

�
(18)

and the2q functions

'oi (x; y) = ~'

�
(2x+ i)

T

�
; (y + i=2)

2


�
; p�T

�
; (19)

respectively.
The q and 2q functions'ei (x; y) and'oi (x; y) can be

combined intoq- and 2q-dimensional column vectors of
functions

'e = ['e0(x; y); '
e
1(x; y); : : : ; '

e
q�1(x; y)]

T (20)

and

'o = ['o0(x; y); '
o
1(x; y); : : : ; '

o
2q�1(x; y)]

T ; (21)

respectively.
With the help of these vectors and matrices, Eqs. (14)

and (15) can now be expressed in the elegant matrix-vector
products

ae =
T

�
�
e�'e (22)

and

ao =
T

�
�
o�'o: (23)

The relations (12) and (13), applied to the arbitrary vec-
tors'e and'o, respectively, lead to the conditions

Ge
�
e�'e =

p�

T
'e (24)

and

Go
�
o�'o =

2p�

T
'o: (25)

Substitution of (22) into (24) yields

'e =
1

p
Geae; (26)

and substitution of (23) into (25) yields

'o =
1

2p
Goao: (27)

Note that (22) representsp equations andq unknowns,
(23) represents2p equations and2q unknowns, (26) repre-
sentsq equations andp unknowns and (27) represents2q
equations and2p unknowns. In the case of oversampling
(p > q � 1) the latter two sets of equations are thus under-
determined.

4. EXAMPLE

In this section we determine some dual windows(t) for
the given Gaussian windowg(t) = 21=4T�1=2e��(t=T )

2

with jjgjj = 1, and compare the dual windows for the quin-
cunx case with the dual windows for the rectangular case.
As a measure we take theL2 norm of the difference of the
dual window(t) and the optimum dual windowopt(t),
which is proportional to the windowg(t), thus we deter-
mine jj � cgjj. One can show that this norm has a min-
imum if c = 1

2��=jjgjj2 in the case of the quincunx lattice
and if c = ��=jjgjj2 in the case of the rectangular lattice.

For this Gaussian windowg(t) it is shown that the opti-
mal choice is� = � for the rectangular lattice [5]. It is not
difficult to show that the optimal choice is� =

p
3� for the

quincunx lattice.
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Figure 2: The dual windows (solid line) of a Gaussian ele-
mentary signalg(t) = 2

1

4T�
1

2 exp(��(t=T )2) and the op-
timum windowsopt(t) (dotted line) for different values of
oversampling, and the difference of the dual window and
the optimum dual window in theL2 norm sense in the case
of the quincunx lattice:

(a)� =

q
12
p
3

7
, � =

1

3

p
3�, p=q = 7=6, jj � optjj = 0:3191

(b)� =

q
4
p
3

3
, � =

1

3

p
3�, p=q = 3=2, jj � optjj = 0:1092

(c)� =

q
4
p
3

5
, � =

1

3

p
3�, p=q = 5=2, jj � optjj = 0:0105

(d)� =

q
4
p
3

7
, � =

1

3

p
3�, p=q = 7=2, jj � optjj = 0:0012

In Fig. 2 we have depicted the dual windows ofg(t) and
the optimum dual windowsopt(t) for several choices of�
and� for the quincunx lattice. In Fig 3 we have depicted
the same for the rectangular lattice.

From this example we can conclude that the dual win-
dows for the quincunx lattice for different values of over-
sampling are better in the sense that the dual windows re-
semble better the optimal dual windows in theL2 sense for
this Gaussian windowg(t).

5. CONCLUSIONS

We presented Gabor’s signal expansion on a quincunx lat-
tice and its relation with a modified Zak transform. It is
shown that the modified Zak transform can be used to de-
termine Gabor’s expansion coefficients and to find the dual
window.

In some cases the Gabor’s signal expansion on a quin-
cunx lattice is better in the sense that the dual window re-
sembles better the optimal dual window in theL2 sense.
This is demonstrated for a Gaussian window.
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Figure 3: The dual windows (solid line) of a Gaussian ele-
mentary signalg(t) = 2

1

4T�
1

2 exp(��(t=T )2) and the op-
timum windowsopt(t) (dotted line) for different values of
oversampling, and the difference of the dual window and
the optimum dual window in theL2 norm sense in the case
of the rectangular lattice:

(a)� = � =
p
6=7, p=q = 7=6, jj � optjj = 0:3415

(b)� = � =
p
2=3, p=q = 3=2, jj � optjj = 0:1299

(c)� = � =
p
2=5, p=q = 5=2, jj � optjj = 0:0158

(d)� = � =
p
2=7, p=q = 7=2, jj � optjj = 0:0023
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