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ABSTRACT

A speaker adaptation scheme named maximum likelihood
model interpolation (MLMI) is proposed. The basic idea
of MLMI is to compute the speaker adapted (SA) model of
a test speaker by a linear convex combination of a set of
speaker dependent (SD) models. Given a set of training
speakers, we first calculate the corresponding SD models
for each training speaker as well as the speaker-
independent (SI) models. Then, the mean vector of the SA
model is computed as the weighted sum of the set of the
SD mean vectors, while the covariance matrix is the same
as that of the SI model. An algorithm to estimate the
weight parameters is given which maximizes the likelihood
of the SA model given the adaptation data. Experiments
show that 3 adaptation sentences can give a signaificant
performance improvement. As the number of SD models
increases, further improvement can be obtained.

1.  INTRODUCTION

In recent years, there is a growing interest in speaker
adaptation (SA) techniques, which has been shown to be
an effective means of improving the performance of the
large vocabulary continuous speaker independent (SI)
speech recognition systems[1]. While many adaptation
schemes have been proposed, MAP estimation[2] and
MLLR[3] seem to be particularly promising.
  Most speaker adaptation schemes attempt to find a map
from the speaker independent acoustic model to the
speaker adapted model in such a way as to more closely
match the characteristics of the test speaker. For example,
the MAP adaptation tries to construct the SA models by
finding the statistics of the SI model and that of the
adaptation data. Since there are so many parameters need
to be estimated, the MAP requires a large amount of
adaptation data. On the other hand, the MLLR transforms
the SI model by applying a linear transformation on the
mean vector of the SI model. The schemes used in[1] [4]
extend the idea of MLLR. Instead of transforming the SI
model, it makes only  use of a subset of the speaker-

dependent (SD) models which are acoustically close to the
test speaker. The SA models are computed by the average
of the set of the transformed SD models.
  In this paper, a new SA scheme named maximum
likelihood model interpolation (MLMI) is proposed which
is based on the assumption that in the feature space, the SA
model to a new speaker can be approximated by a linear
convex combination of the SD models in the training set,
and that these SD models from each training speaker have
different effect on the SA model, so the weight parameters
corresponding each of the SD models are different. If the
characteristics of the test speaker may be closely
represented by the linear combination of the set of SD
models, MLMI is able to achieve the performance of a SD
system. In addition, since there is a small number of
parameters to be estimated, MLMI needs only a little
amount of adaptation data. Experimental results show that
with 3 adaptation sentences, MLMI gives a significant
performance improvement in the error rate. In addition, as
the number of training speakers in the training set increases,
further improvement can be obtained.
  Because of the special structure and various
characteristic features of Mandarin Chinese[5], the speech
recognition system is very different from that of the
western language. For sake of ease of interpretation, the
speech recognition system especially the acoustic model is
first introduced in section 2, and the basic idea of MLMI
and the algorithm are described in section 3 and 4,
respectively. Section 5 gives the experimental results and
the conclusions are drawn in section 6.

2.  DURATION DISTRIBUTION BASED
HMM

  The recognition system is composed of two parts, the
acoustic part and the language part. The acoustic part
converses the input speech data into syllable strings, and
the language part converses the syllable strings into
Chinese characters. Here we only introduce the acoustic
model. In the following development, we assume that each
state comprises of a single Gaussian with the full
covariance matrix.



  The acoustic part is based on a modified HMM called
the duration distribution based hidden Markov model
(DDBHMM)[6]. The DDBHMM is an inhomogeneous
HMM which is based on the fact that the state duration
distribution is relatively stationary. In DDBHMM, the
duration distribution probability of the state is used instead
of the state transition probability which is used in the
classical HMM. To be more specific, given T frames of
observation feature vector of speech
X x x xT= ( , ,..., )1 2  and the word string

W w w wK= ( , ,..., )1 2 , the optimum word string W *  is

defined as:
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Here, P(X|W) is the probability of the observation
sequence X given the word string W, and τ i  is the number

of frames of the observation vectors belonging to i-th state,
or the state duration of state i:
τ i i iS S= −+1  , i=1,2,...,N

where Si  is the state segment point and N is the number of

states. Pi ( )τ  is the state duration distribution function of

the i-th state. b xi t( )  is the probability density of

observation vector xt  in state i and
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where ui  and Ri  is the i-th mean vector and covariance

matrix of the model and D is the dimension of the
observation vector.
  Comparing equ(1) with the conventional HMM, we may
see that the state duration probability density of HMM is
inherently exponential, while DDBHMM may take
arbitrary form, which is more appropriate in application.
  

3.  BASIC IDEA OF MLMI

The basic idea of model interpolation is very simple.
Given a set of M training speakers and the corresponding
speaker dependent models, the speaker adapted model is
computed by the linear convex combination of the set of
SD models and can be expressed as follows:
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where
  { | , ,..., }αm m M= 1 2  is a set of weight parameters

corresponding to the set of the training speaker;
   M is the number of training speakers in the training set;

  u j
SA( )  and U j

SA( )  are respectively the SA mean vector

and covariance matrix belonging to state j. j=1,2,...,N, and
N is the number of states in the SA models;

  umj
SD( )  is the j-th mean vector of the SD model belonging

to the m-th training speaker, m=1,2,...,M,
  Ri   is the j-th covariance matrix of the SI model.

  As shown in equation(3-5), the mean vector of the SA
model is the weighted sum of the SD means from the set of
training speakers, while the covariance matrix is the same
as that of the SI models. That is to say, the SA mean vector
of any new speaker can be computed by the interpolation
of the SD means in the SD model set.  Hence the name
model interpolation.
  Intuitively, when there is no adaptation data available,
all the weights should have the same value because all the
SD models have the same effect, and then the new mean
vector is calculated as the average of all the SD mean
vectors, and this becomes a SI model. On the other hand,
when the adaptation data from a new test speaker is
available, the weights to each SD model should not be the
same, since each SD model has different effect on the SA
model. Some of the SD models which are closer to the test
speaker should have larger weights, while those which are
very different from the test speaker should have smaller
weights. In the extreme case, when the test speaker is
acoustically similar to one of the training speaker m, we
can expect that the weight parameter corresponding to
speaker m is close to 1, and other parameters are close to 0,
and this becomes a SD model.

4.  THE ALGORITHM OF MAXIMUM
LIKELIHOOD MODEL INTERPOLATION

The MLMI tries to estimate the weight vector  to
maximize the likelihood of the speaker adapted models
given the available adaptation data. Here an object
function is defined as follows:
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where

  a M
T= ( , ,..., )α α α1 2  is the weight vector;

  xit  is the t-th frame aligned to the i-th SI mean;



  Ti  is the number of frames aligned to the i-th SI mean;

  n is the number of states in the adaptation data;

  ⋅
2

 is defined as the norm of the vector:
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where Ri
−1  is the inverse of the i-th SI covariance matrix.

  The optimum solution of the weight vector which
minimize the objective function J(a) is

a J a
a

* arg min ( )=
∈Ω

                    (8)

with the constraint set of equ (5).
  From equations above we may see that the optimum

solutions a *  also maximize the likelihood of the SA
models given the adaptation data, hence the name
maximum likelihood model interpolation .
  The equ (8) may be rewritten as :

J a a Ca b a qT T( ) = − +2                (9)

where C is a M*M matrix, with the component
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b is a M-dimension vector
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where the symbol < > is defined in equ(7).
  Given the constraint condition of equ(5), the optimum
solution of equ(9) can be calculated with any constraint
optimization algorithm, for example, the gradient
projection algorithm, and the procedure is described as
follows:
  1) Make up a set of SD models for each of the training
speaker, comprising a single Gaussian per context-
dependent state, and compute the initial SI models

{ , | , ,..., }( )u R i Ni
SD

i = 1 2 ;

  2)Initialize the weight vector α  with a proper value, for
example, 1/M;
  3)Decode the adaptation data for the test speaker using
SI models, and do a Viterbi-alignment of the adaptation
data against the decoded script to assign all the frames of
the adaptation data to the corresponding states (supervised

or unsupervised);
  4) Calculate J(a) according to equ(9) and use the
constraint optimization algorithm to find the optimum α
that minimizes equ(9);
  5) Calculate the SA model according to equ(3).
 From the procedure above, we may expect that MLMI is
able to achieve the performance of a SD system if we
select the set of SD models carefully so that the
characteristics of any test speaker may be closely
represented by the linear combination of the set of SD
models. In addition, since there is only M parameters
needed in equ(6), a very little amount of adaptation data is
enough to estimate the weight vector. This means low
computation cost as well as fast adaptation.

5.  EXPERIMENT RESULTS

In the following experiments, we investigate the
performance of the MLMI. To illustrate the effectiveness
of the adaptation algorithm, only the acoustic
performances are given. The baseline system has been
described above, and details are available in [7].
  In 1998, the recognition system won the first place with
the character error rate 4% in the National Assessment on
the Large Vocabulary Continuous Speech Recognition,
which is sponsored by the National 863 High-Tech Project.
All the tests are based on this recognition system.
  The test data comprises of 100 sentences each from 3
speakers, and there are totally 300 sentences. All the
training data and test data are provided by the National
863 High-Tech Project for large vocabulary continuous
speech recognition. Supervised batch adaptation is used in
all the following tests.

# of
sentences

S1 S2 S3 Avg.

0
baseline

28.11 25.93 25.38 26.47

1 22.37 30.1 24.74 25.73
2 22.19 26.31 22.82 23.77
3 23.14 25.11 22.05 23.43
4 23.31 24.98 21.67 23.32
5 23.31 25.50 22.35 23.72

10 22.71 25.06 21.98 23.25
20 21.68 24.03 22.65 22.78
30 21.42 24.29 22.69 22.80
40 22.02 24.99 22.74 23.25
Table 1  the error rate with different number of

adaptation sentences

  In the first test, we assess how the amount of the
adaptation data affects the performance of the scheme.
Table 1 gives the error rate of MLMI with different



number of adaptation sentences. There are totally 80 SD
models from 80 training speakers used in the test.  3 test
speaker’s performances (s1~s3) as well as the average
error rate are listed. As can be seen in Table 1, the MLMI
is able to reduce the error rate by 10% with only 1~3
sentences. But when there are more sentences in adaptation,
the performance improvement is insignificant. This is
because there are only 80 parameters to be estimated. So
as the number of adaptation sentences increases, the
performance saturates quickly. This limitation can be
overcome by using more SD models in the scheme which
is shown in the next test.
  In the second test, we investigate the performance of
MLMI with different number of SD models in the training
set. 10 sentences are used for adaptation since when the
number of SD models increases, more parameters need to
be estimated, and thus more adaptation data are needed.
Table 2 shows that as the number of training speaker
increases, the MLMI gives better performance. In the
extreme case, if there are enough SD models in the set so
that any SA models for the new speaker can be represented
exactly by that set of SD models, speaker dependent
performance can be expected.

#of SD models avg. Error rate
40 25.24
80 23.33
120 22.84
160 22.20

Table 2.  Performance with different number of
adaptation sentences

6.  CONCLUSIONS

In this paper, a new adaptation scheme called MLMI is
proposed which is based on model interpolation. MLMI
makes up the SA model of the test speaker by the linear
combination of a set of SD models. Experimental results
show that the scheme gives significant performance
improvement with only 3 sentences as adaptation data. As
the number of SD models increases, better performances
can be obtained. Also the computation cost is relatively
low. It still remains unresolved how we could select a set
of SD models, which consist of as few training speakers as
possible while still can approximate almost all the test
speakers.
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