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ABSTRACT

In this paper, the prosodic information, a very special and
important feature in Mandarin speech, is used for Mandarin
telephone speech utterance verification. A two-stage strategy,
with recognition followed by verification, is adopted. For
keyword recognition, 59 context-independent subsyllables, i.e.,
22 INITIAL’s and 37 FINAL’s in Mandarin speech, and one
background/silence model, are used as the basic recognition
units. For utterance verification, 12 anti-subsyllable HMM’s,
175 context-dependent prosodic HMM’s, and five anti-prosodic
HMM’s, are constructed. A keyword verification function
combining phonetic-phase and prosodic-phase verification is
investigated. Using a test set of 2400 conversational speech
utterances from 20 speakers (12 males and 8 females), at 8.5%
false rejection, the proposed verification method resulted in
17.8% false alarm rate. Furthermore, this method was able to
correctly reject 90.4% of nonkeywords. Comparison with a
baseline system without prosodic-phase verification shows that
the prosodic information can benefit the verification
performance.

1.  INTRODUCTION

Recently, research into algorithms that are able to spot keywords
has been focused on constructing hidden Markov model (HMM)
based speaker independent keyword spotting systems using
either subword models or whole word models [1]-[2]. In
utterance verification, a large number of research efforts have
been proposed. These approaches employ some type of a
likelihood ratio distance to verify whether or not a given
keyword exists within an input speech segment. Anti-keyword
models were generally constructed to provide an anti-keyword
scoring in computing likelihood ratio statistics. Rahim et al. [1]
used the scores of antikeyword models and a general acoustic
filler model for digit string utterance verification. Sakkar et al.
[2] used a two-stage verification: subword-level verification
followed by string-level verification.

Chinese is a tonal language in which the same phonetic syllable
when pronounced in different tones gives quite distinct
meanings. The five tones, four lexical tones and one neutral
tone, in Mandarin Chinese have lexical meaning.
Conventionally, there are 408 Mandarin base syllables,
regardless of tones, which are composed of 21 INITIAL’s and 37
FINAL’s. In recent years, the most popular configuration of
Mandarin Chinese speech recognition consists of two
subrecognizers. One is tone recognizer and the other is phoneme
or syllable recognizer[3]. Some of these efforts focused on the
combination of phonetic and prosodic features. Prosodic
information, such as pitch and spectral energy in fundamental
frequency, plays an important role in Mandarin speech
recognition. In this paper, it is highly desirable to include the
expected or correct keywords in a higher rank. In addition,

homonym words with different tone combinations need prosodic
information for discrimination. Therefore, the prosodic
information is first adopted for Mandarin speech utterance
verification.

Fig. 1 shows the block diagram of the keyword spotting system.
First, the phonetic and prosodic features are extracted. Hidden
Markov Models (HMM’s) with continuous observation densities
are adopted to model the phonetic and prosodic features. In the
first stage, Viterbi algorithm is employed to find the scores of
the N best keyword candidates and their corresponding
subsyllable boundaries. Subsyllable boundaries are then used to
extract the FINAL part of Mandarin syllables which contains the
prosodic information. In the second stage, the phonetic features
of these FINAL parts are fed to their corresponding anti-
subsyllable HMM’s to give a phonetic verification score.
Similarly, the prosodic features of these FINAL parts are fed to
the prosodic HMM’s and anti-prosodic HMM’s to output a
prosodic verification score. A keyword verification function
combining phonetic-phase and prosodic-phase verification
functions is investigated and used to reorder the ranks of the N
best keyword candidates.
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Fig. 1. The block diagram of the keyword spotting system.

2.  FEATURE EXTRACTION

Two sets of features, phonetic and prosodic features, are used in
this system. For phonetic features, 12 MFCC, 12 delta MFCC,



delta log energy, and delta delta log energy are used. In prosodic
feature extraction for the ith analysis frame of the jth FINAL
part, four parameters in the prosodic feature vector are defined
as follows:
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where P  is the logarithmic value of the pitch period of a

FINAL part, P  is the average logarithmic value of the pitch
period, and r is a small random value.Sk  is the spectral energy

at the fundamental frequency, S  is the average spectral energy,
and Smax is the spectral energy at the first formant frequency.

3.  CONSTRUCTION OF ANTI-KEYWORD
MODELS

In the keyword recognizer, 22 INITIAL (including one null
INITIAL) and 37 FINAL context-independent HMM’s are
constructed. Each INITIAL HMM consists of 3 states and each
FINAL HMM consists of 5 states, each with 10 Gaussian
mixture densities. In general, for every subsyllable model in the
model set, a corresponding anti-subsyllable model is trained
specifically for the verification task. However, for every
subsyllable model, the corresponding anti-subsyllable model
should be trained using a wide range of sounds. For example, to
train the anti-subsyllable /a/, all the training data of the other 58
subsyllables should be used. This renders the anti-subsyllable
very general and ineffective. In this work, the INITIAL’s and
FINAL’s in Mandarin speech are separately treated. The 22
INITIAL’s and 37 FINAL’s are clustered into 3 groups and 9
groups, respectively. The K-means clustering algorithm is used
to cluster subsyllables based on minimizing the overall
intersubsyllable group distance. For each subsyllable group, all
speech segments corresponding to sounds that are not modeled
by any of the subsyllables in that subsyllable group are used to
train an anti-subsyllable HMM. In total, there are 3 INITIAL
anti-subsyllable HMM’s and 9 FINAL anti-subsyllable HMM’s.
For INITIAL and FINAL anti-subsyllable HMM’s, 8 and 16
Gaussian nodes are used, respectively.

Since lexical tone is the most important feature of the prosodic
information, prosodic model should be constructed based on
lexical tone behavior. Earlier investigations showed that the
tone behavior is very complicated in continuous Mandarin

speech, although there are only 5 different tones in Mandarin.
Therefore, we assume every kind of possible tone combination
needs a context-dependent model, then a total of 175 prosodic
HMM’s will be needed. For the construction of anti-prosodic
models, the training data are divided into five groups according
to the five lexical tones. Five anti-prosodic HMM’s, each
corresponding to one context-independent lexical tone, are
constructed to enhance the discriminability among prosodic
HMM’s. An anti-prosodic HMM can be considered as a lexical-
tone-specific model. It is based on similar concept to the cohorts
in speaker verification [5]. An anti-prosodic HMM is generally
trained on the training data with all lexical tones but that with
the corresponding lexical tone. Each prosodic HMM has 4 state
and 6 mixtures.

4.  TWO-STAGE RECOGNITION

4.1  Keyword Recognition

In this system, a two stage recognition scheme is used. In the
first stage, Viterbi algorithm is employed to find the most likely
keyword Wk , where
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and )|( jWOL  is the likelihood of the observation sequence O

given word Wj. In the context of subsyllable recognition, Wk  is a
concatenation of subsyllable units that can be written as
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where 2N is the number of subsyllables. For detailed
representation, Wk can be expressed as a concatenation of
INITIAL and FINAL parts described as follows.
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subsyllable lexical representation of keyword Wk.

4.2  Utterance Verification

Utterance verification can be treated as the problem of statistical
hypothesis testing. Two types of errors can occur: false rejection
(Type I) and false acceptance or false alarms (Type II ) errors. In
this verification process, a two-phase verification scheme is
employed.

 4.2.1  Phonetic-Phase Verification

Given a subsyllable )(k
ns , the normalized confidence measure is

defined as
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where )(k
ns  is the anti-subsyllable model of )(k

ns , )(k
nT  is the

number of frames allocated for subsyllable )(k
ns . For an N-

syllable (or 2N subsyllable) string )(
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to the most likely keyword Wk, the whole word phonetic
verification function is defined as follows:
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where η  is a positive constant, and )(k
nα  is a subsyllable

weighting empirically chosen as
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The subsyllable weight for INITIAL is chosen smaller than that
for FINAL. This is because that the INITIAL part in Mandarin
syllable occupies just a short duration compared to the FINAL
part and the recognition accuracy or reliability for INITIAL is
lower than that for FINAL part.

4.2.2  Prosodic-Phase Verification

In the prosodic-phase verification, the corresponding lexical
tone string 

kWT  with respect to the keyword Wk is obtained

using the sandhi rules [5] and written as
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Since most of the prosodic information is embedded in the
FINAL part, the prosodic verification is only performed on the
FINAL part. Given the prosodic feature vectors of a FINAL part
corresponding to the lexical tone tj, the prosodic confidence
measure is written as
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where ],[
jj ttj ppP =  represents the verification feature vector,

and G(�) is a Gaussian distribution of the verification feature
vector. The parameters of the feature vectors 

jtp  and 
jtp  are

obtained by processing the prosodic feature vectors of the
segmented FINAL part through prosodic model tj and anti-
prosodic model jt  , respectively. Therefore, 

jtp  forms a 21-

dimensional vector consisting of the following:
• Coefficients representing the contour of the prosodic

features of the segmented FINAL part. To be more
specific, each prosodic feature in Vj is represented by a
smooth curve formed by orthonormal expansion with
discrete Legendre polynomials [6]. The number
coefficients used in this polynomial is up to the third
order. The zero-th order coefficient represents the mean
of the prosodic feature contour and the other three
coefficients represent its shape. Given a 4-dimensional
prosodic feature vector, the number of parameters is
16.

• Four parameters representing the state durations in
number of frames normalized by the total frame
duration of segmented FINAL part.

• The prosodic HMM likelihood L(Vj�tj).

Similarly, 
jtp  is formed by processing Vj using the anti-

prosodic model jt  and computing the corresponding 21

parameters. For the whole word verification, the verification
function can be decomposed into a series of FINAL part
verification functions. Assuming independence, the whole word
prosodic verification function is defined as follows:
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where κ  is a positive constant. The outputs of the prosodic and
phonetic verification functions are then combined as follows.
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where β is a weighting. Finally, the keyword rejection/
acceptance decision is made by comparing D(O, P, Wk) with a
predefined threshold.

5.  EXPERIMENTAL RESULTS

In order to assess the keyword spotting system performance, a
query system to access telephone number information for a
person in the directory has been implemented. In our system,
200 faculty names in National Cheng Kung University were
selected as the keywords. A continuous telephone-speech
database was employed to train the system. The database is part
of the MAT (Mandarin Speech Across Taiwan) speech database
and is composed of short spontaneous speech, numbers,
syllables, words, and sentences. The total number of files is
12,386. This database was pronounced by 295 speakers (192
males, 103 females). All speech data were recorded via public
telephone lines in 8 KHz using a Dialogic D/41D telephone card
and a 16-bit Soundblaster card. We also recorded 2400
utterances for testing spoken by a different group of 20 speakers
(12 males, 8 females) responding to requests for a person’s
name in our vocabulary. All test utterances were assigned to one
of the following categories. The percentage for each category in
the testing database is also listed below.

• In-vocabulary names, spoken in isolation (K): 34%
• In-vocabulary names, embedded before a phrase (K+N): 17%
• In-vocabulary names, embedded after a phrase (N+K): 20%
• In-vocabulary names, embedded in a sentence (N+K+N): 19%
• Speech with no in-vocabulary names (N): 10%

In this database, only 90% of the users provided an isolated
name or a name embedded in a phrase or a sentence. 10% of
user responses included no names at all. All of these responses
need to be rejected. In our experiments, two types of errors,
namely, false rejection and false alarm are used to evaluate the
system performance. Several experiments were conducted to
determine factors necessary to achieve the best performance.

5.1  Effect of the weighting parameter β

In the first experiment, the variation of the total Type I and Type
II errors as a function of the weighting parameter β  was
evaluated as a function of the weighting parameter β. Fig. 2
shows that the combination of phonetic and prosodic
information can improve the keyword spotting rate for

50.025.0 ≤≤ β . When β=0.375, the system can achieve the
best recognition performance.

5.2  Experiments for the effects of prosodic
information
Two experiments were conducted to test the performance of the
proposed verification method. In order to benchmark the
verification performance, a baseline system that employs only



phonetic-phase verification was established. Fig. 3 shows the
verification performance of both the proposed and the baseline
verification methods. It is clear that the proposed method
outperforms the baseline system. For instance, at 8.5% false
rejection, the proposed system resulted in 17.8% false alarm
rate. This is compared with the baseline system, which results
in 22.4% false alarm rate at the same 8.5% false rejection rate.
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Fig. 3 Utterance verification performance comparison of the
proposed and the baseline methods

5.3  Experiments for the locations of keywords

The speech utterances divided into five categories were
experimented upon to evaluate the effects of the locations of the
keywords in an utterance. The experimental results are listed in
Table I. The false alarm rate for the first category (K) and the
third category (N+K) was 11.4% and 19.8%, respectively, at a
false rejection rate of 8.5%. They were better than that for other
categories. This is because the FINAL part in these two
categories can be easily detected. Consequently, we can obtain
better performance in these two categories. It is reasonable that
the first category (K) and the second category achieves the
lowest and the highest false alarm rates, respectively. At 8.5%
false rejection, the average false alarm rates were 11.4% and
24.6%, for isolated and embedded keywords, respectively.
Furthermore, for the fifth category (N), the proposed method
was able to correctly reject 90.4% of nonkeywords.

6.  CONCLUSIONS

In this paper, we have demonstrated some achievements in
continuous Mandarin speech keyword recognition and
verification. In this system, 59 context-independent subsyllables
are used as the basic recognition units. A two-stage strategy,
with recognition followed by verification, is adopted. For
utterance verification, 12 anti-subsyllable HMM’s, 175 context-
dependent prosodic HMM’s and five anti-prosodic HMM’s, are
constructed. A keyword verification function combining
phonetic-phase and prosodic-phase verification is investigated.
Experimental results shows that utterance verification with
prosodic information outperforms the baseline system without
prosodic information.

Table I  False alarm rates (%) for five speech utterance
categories, at a false rejection rate of 8.5%

Speech utterance category
Isolated Embedded No

Keyword
K

(34%)
K+N

(17%)
N+K

(20%)
N+K+N
(19%)

N
(10%)

False alarms (%) 11.4 24.6 19.8 21.2 9.6
Average (%) 11.4 21.7 9.6
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