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ABSTRACT

Estimation of the state levels of a discrete-time, finite-state Markov
chain hidden in coloured Gaussian noise and subjected to unknown
nonlinear distortion is considered. If the nonlinear distortion has
almost linear behaviour for small values near zero or for large val-
ues, extreme value theory can be applied to the level estimation
problem, resulting in simple estimation algorithms. The extreme
value-based level estimator is computationally inexpensive and has
potential applications in data measurement systems where inaccu-
racies are introduced by dead zones or saturation in sensor char-
acteristics. The effectiveness of the new level estimator is demon-
strated by way of computer simulations.

1. INTRODUCTION

A significant amount of research has been directed at the estima-
tion of hidden Markov models (HMM) using maximum likelihood
(ML) estimation methods. In this paper we explore the use of
statistical extremes in estimating the levels of an HMM subjected
to unknown nonlinear distortion, which makes the application of
ML methods computationally infeasible. The nonlinear distortion
is assumed to represent anunknown nonignorable missing data
mechanism. If the missing data mechanism produces left or right
censored observations, which implies that either the right or left
tail of the data distribution can be observed without distortion, re-
spectively, extreme value theory can be applied to the level estima-
tion problem. Likewise, if the observed data are subject to double
censoring, such as truncation, the minima of the absolute values
of observations can be used to estimate the levels of an HMM by
invoking extreme value theory.

Suppose that the observations available to us are generated by
the functional

y(k) = F�hx(k); g�i+ n(k)
�

(1)

whereF : R ! R is an unknown nonlinear function with lin-
ear behaviour either for large positive and/or negative values or for
small values of its argument near zero,h�; �i denotes inner product,
x(k) is a discrete-time, finite-state Markov chain with level vec-
tor g�, andn(k) is a possibly coloured noise process with known
marginal distribution. Assume that the levels of the Markov chain
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are parametrised by anunknownparameter�. For example in dig-
ital modulation the actual signal levels are determined by a single
parameter related to signal amplification. We wish to estimate�
from the observationsfy(k)g in (1). The main idea in this paper is
to show that extreme value theory for HMMs yields three possible
invariant distributions for the extremes of a sequence of HMM ob-
servations. The unknown level parameter� can be estimated from
these distributions by simple curve fitting with a unique global so-
lution unlike the ML estimation of HMMs, which can be plagued
by local stationary solutions.

The hidden Markov model in (1) is encountered in signal pro-
cessing and control applications where sensors used for data mea-
surement may have dead zones or nonlinear response for small
input signals, and exhibit saturation for large input signals, result-
ing in missing or nonlinearly distorted measurements. Extreme
value theory can be applied to all these cases to glean useful in-
formation about the underlying signal from statistical extremes of
nonlinearly distorted observations.

The paper is organised as follows. Section 2 provides an over-
view of extreme value theory. In Section 3 the level estimation
problem is defined and extreme value-based algorithms for level
estimation are developed. Section 4 presents simulation examples
to illustrate the application of the algorithms.

2. EXTREME VALUE THEORY

2.1. Maxima of i.i.d. Sequences

Let MN denote themaximumin a sequence ofN independent
identically distributed (i.i.d.) random variablesfy(1), y(2); : : : ;
y(N)gwith common cumulative distribution function (c.d.f.)F (x)
= Prfy(i) � xg, i = 1; 2; : : : ; N , i.e.,

MN = max
�
y(1); y(2); : : : ; y(N)

�
: (2)

Classical extreme value theory is concerned with the asymptotic
distribution ofMN asN ! 1. If F (x) is known, the c.d.f. of
MN is given by

PrfMN � xg = Pr
�
y(1) � x; y(2) � x; : : : ; y(N) � x

	
= FN (x): (3)

According to extreme value theory, the asymptotic nondegen-
erate c.d.f. ofMN must belong to one of three possible distribu-
tions if it exists. The particular asymptotic distribution can be de-
termined from only a limited knowledge of the tail distribution of
y(i), thereby making knowledge ofF (x) for all x unnecessary.



We are interested in determining the limiting c.d.f.G(x) that
F (x) converges to asN ! 1 under appropriate choices of nor-
malising constantsaN > 0 andbN

Pr
�
aN (MN � bN ) � x

	 w�! G(x); N !1 (4)

where
w�! denotes convergence at continuity points ofG(x). If

such a nondegenerate distributionG(x) exists, then it must belong
to the class ofmax-stabledistributions that satisfy the relationship
GN (aNx+bN ) = G(x) for a givenN and some constantsaN and
bN . All possible max-stable distributions have one of the follow-
ing three parametric types, which are also known as theextreme
value distributions:

Type I (Gumbel distribution):

G(x) = exp
��e�x�; �1 < x <1:

Type II (Fr échet distribution):

G(x) =

(
0 x � 0

exp
��x��� � > 0; x > 0:

Type III (Weibull distribution):

G(x) =

(
exp

��(�x)�� � > 0; x � 0

1 x > 0:

Equation (4) can be rewritten as

FN
�
uN
� w�! G(x); uN , x=aN + bN : (5)

If the convergence in (5) holds,F (x) is said to be in thedomain
of attractionof G(x). The necessary and sufficient conditions for
convergence ofF (x) to one of the extreme value distributions have
been documented in [1]. In general, ifF (x) has a finite right end-
point, i.e.,supfx : F (x) < 1g <1, and a jump discontinuity at
it, thenG(x) is degenerate. For continuousF (x),G(x) is usually
of Type I. If the right endpoint ofF (x) is finite with no jump at it,
G(x) will have the Type III limit.

2.2. Maxima of HMM Observations

We are interested in extending the classical extreme value theory
results for i.i.d. sequences to dependent sequences such as HMMs.
Let us assume thatfy(1); y(2); : : : ; y(N)g is a stationary and de-
pendent sequence, e.g., an HMM. In this case (3) takes the form

PrfMN � xg = Pr
�
y(1) � x; y(2) � x; : : : ; y(N) � x

	
, F1;2;::: ;N(x; x; : : : ; x)

whereF1;2;::: ;N (x; x; : : : ; x) is the joint distribution of the de-
pendent sequencefy(i)g, which may be unknown or hard to com-
pute. The advantage of extreme value theory in this case is that
it provides an asymptotic result for extreme order statistics that
depends only on the marginal distribution offy(i)g under some
weak conditions on the dependent sequence.

The existence of a nondegenerate distributionG(x) such that
for a suitably chosen linear normalisationaN > 0 andbN

F1;2;::: ;N
�
uN ; uN ; : : : ; uN

� w�! G(x) (6)

hinges on the rapid decay of dependence between the successive
elements offy(i)g [1], which is assured by the satisfaction of the
conditionD(uN ).

Definition (The Condition D(uN )). For a given sequencefuNg
and any positive integers1 � i1 < i2 < � � � < ip < j1 < j2 <
� � � < jq � N with j1 � ip � l, if we have��Fi1;::: ;ip;j1;::: ;jq �uN ; : : : ; uN�

� Fi1;::: ;ip
�
uN ; : : : ; uN

�
Fj1;::: ;jq

�
uN ; : : : ; uN

��� < �N;l

where�N;lN ! 0 asN ! 1 for some sequencelN = o(N),
the conditionD(uN ) is said to hold.

Let fŷ(i)g denote theassociated independent sequencewhich
has the same marginal c.d.f. asfy(i)g, but with i.i.d. elements.
Defining M̂N , max

�
ŷ(1); ŷ(2); : : : ; ŷ(N)

�
, the relationship

between the dependent sequencefy(i)g and the associated inde-
pendent sequencefŷ(i)g is given by theextremal index�:

Pr
�
M̂N � vN

	 w�! G(x), Pr
�
MN � vN

	 w�! G�(x) (7)

wherevN = x=aN + bN and0 < � � 1. The c.d.f.sG(x) and
G�(x) are of the same type sinceG(x) is a max-stable distribution.

2.3. Distribution of Minima

Let mN denote theminimumterm in the sequencefy(1); y(2),
: : : ; y(N)g, i.e.,

mN = min
�
y(1); y(2); : : : ; y(N)

�
: (8)

The distribution ofmN is given by

PrfmN � xg =
1� Pr

�
y(1) > x; y(2) > x; : : : ; y(N) > x

	
= 1� �1� F (x)

�N
whereF (x) is the marginal c.d.f. offy(i)g. The possible nonde-
generate limiting distributionsH(x) satisfying

Pr
�
cN (mN � dN ) � x

	 w�! H(x) (9)

for suitable linear normalisation constantscN > 0 anddN are

Type I (Gumbel distribution):

H(x) = exp
��e�x�; �1 < x <1:

Type II (Fr échet distribution):

H(x) =

(
1� exp

��(�x)��� � > 0; x < 0

1 x � 0:

Type III (Weibull distribution):

H(x) =

(
0 x < 0

1� exp
��x�� � > 0; x � 0:

The three distributions listed above aremin-stabledistribu-
tions defined by

�
1�H�cNx+dN��N = 1�H(x) for appropriate

constantscN anddN .

3. HMM LEVEL ESTIMATION

We will first state the model assumptions for the estimation prob-
lem and then propose estimation procedures for two general forms
of nonlinearity.
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Figure 1: Observation model.

3.1. Observation Model Assumptions

The generic observation model of (1) is schematically shown in
Fig. 1. Letx(i), i 2 Z+, define anM -state (M < 1) homoge-
neous Markov chain with state spacefe1; e2; : : : ; eMg whereei
is theith unit vector inRM with zero entries except for itsith en-
try which is one. LetP denote theM �M transition probability
matrix with its(i; j)th entry given bypij = Prfx(k + 1) = ej j
x(k) = eig and

PM
j=1 pij = 1 8i 2 f1; 2; : : : ;Mg (i.e.,P is a

stochastic matrix).
The stationary Markov chain distributions = [s1; : : : ; sM ]T

is given by thePerron-Frobenius(PF) eigenvector ofP , where
si = Prfx(k) = eig ask ! 1. The PF eigenvector is defined
by

s
T
P = s

T ; si � 0;

MX
i=1

si = 1:

We assume thats is known. In most cases of interests will have
the forms = [1=M; : : : ; 1=M ]T , i.e., equally likely Markov states
ask!1.

The output of the Markov chain is given by the inner product
u(k) = hx(k); g�i whereg� = [g1(�); g2(�); : : : ; gM(�)]T is
the vector of Markov chain levels parametrised by anunknown
parameter�. The functionsgi(�) are assumed to have a known
explicit form. For example, in the case of a binary Markov chain,
we will haveg� = [��; �]T .

The noise processn(k) in which the Markov chain is embed-
ded is assumed to be stationary and possibly coloured, to have a
known marginal distribution, to be in the domain of attraction of
a nondegenerate extreme value distribution, and to satisfy the dis-
tributional mixing conditionD(uN ). Hidden in additive station-
ary noise, the Markov chain outputs can be regarded as a chain-
dependent process [2, 3].

Below we outline two algorithms for estimating� based on
the invariant distribution of the extremes of an HMM.

3.2. Algorithm 1: Estimation of Levels from Maxima of Mix-
tures

In most practical cases the additive noisen(k) will have a Gaus-
sian marginal distribution with zero mean and variance�2, i.e.,

F (x) =
1p
2��2

Z x

�1

exp

�
� u2

2�2

�
du:

If the conditionD(uN ) is satisfied byn(k), then the maxima of
fy(k)g will be in the domain of attraction of the Type I distribu-
tion [3]. The estimation procedure consists of segmenting the ob-
servation sequencefy(k)g into L subsequences of lengthN and
then fitting the maxima of individual subsequences to the Gumbel
distribution in accordance with (7)

Pr
�
MN;i � vN

	 w�! G�(x); i = 1; : : : ; L

whereMN;i is the maximum of theith subsequence. SinceN is
finite, an exact fit is not possible. The parametersa andb of the
Gumbel distributionG(a(x + b)) = exp

��e�a(x+b)� are given
by a = 1=aN andb = aN(bN + ln �). Maxima of the Markov
chain hidden in coloured noise will have the following marginal
mixture distribution�

1

M

MX
i=1

F (x� gi(�))

�N
w�! G(a(x+ b)): (10)

Once the estimates ofa andb have been obtained, the parameter
� can be estimated by minimising a distance measure, such as the
squared̀ 2 norm, between the left and right sides of (10).

The maximum likelihood estimateŝa and b̂ are given by the
solution of the following system of equations

eab
LX
i=1

e�aMN;i = L

1

L
+

PL
i=1MN;ie

�aMN;iPL
i=1 e

�aMN;i
=

1

L

LX
i=1

MN;i:

3.3. Algorithm 2: Estimation of Levels from Truncated Data

The procedure for level estimation from minima is similar to the
procedure in the previous subsection. Assuming that the values
of y(k) near zero are not distorted nonlinearly, we will divide
fjy(k)jg into L subsequences of lengthN and then fit the min-
ima of subsequences to the Type III distribution (i.e., the Weibull
distribution):

Pr
�
cN (mN;i � dN ) � x

	 w�! H(x); i = 1; : : : ; L

wheremN;i is the minimum of theith subsequence. The parame-
tersa and� of the Weibull distributionH(x) = 1� exp(�x�=a)
are estimated from themN;i with marginal mixture distribution

1�
�
1� 2

M

M=2X
i=1

�
F (x� gi(�))� F (�x� gi(�)

��N

w�! H(x) (11)

where the left-hand side reflects the folding effect of absolute value
operation. The level parameter� is estimated by minimising a
distance measure between the left and right sides of (11).

The maximum likelihood estimateŝa and �̂ are obtained by
solving the following system of equations fora and�

a =
1

L

LX
i=1

m�
N;i

L

�
=

L
PL

i=1m
�
N;i lnmNiPL

i=1m
�
N;i

�
LX
i=1

lnmN;i:

4. SIMULATION EXAMPLES

Consider an HMM with transition probability matrix

P =

2
64
0:3 0:2 0:2 0:3
0:2 0:4 0:2 0:2
0:2 0:2 0:4 0:2
0:3 0:2 0:2 0:3

3
75
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Figure 2: Markov chain outputfu(k)g and its noisy and distorted
versionfy(k)g.

and levelsg� = [�3�;��; �; 3�]T . The additive noisen(k)
is Gaussian with zero mean and autocorrelationRn(0) = 5:00,
Rn(1) = �2:78, Rn(2) = 1:40, Rn(3) = �1:28, Rn(4) =
�0:20, Rn(5) = 1:00.

Supposefy(k)g is nonlinearly distorted for small HMM out-
puts. We can then use the maxima of subsequences offy(k)g to
estimate�. For� = 1, the first 200 points ofu(k) andy(k) are
shown in Fig. 2. ForN = 50 andL = 100, the Gumbel distri-
bution and the distribution of the associated independent maxima
fitted to observed maxima are shown in Fig. 3. The Gumbel pa-
rameter estimates arêa = 0:8602 and b̂ = 6:2365, and the level
estimate iŝ� = 0:9943. Fig. 3 shows that the level estimation will
not be affected by nonlinear distortion fory(k) < 4:5.

If the HMM outputs go through an unknown nonlinearity caus-
ing saturation, then the minima offjy(k)jg can be used. The first
200 points ofu(k) and jy(k)j are shown in Fig. 4. The Weibull
distribution and the c.d.f. of associated minima fitted to the min-
ima offjy(k)jg are shown in Fig. 5. The fit results in̂a = 0:0748,
�̂ = 1:0380 and�̂ = 0:9679. According to Fig. 5, any nonlinear
distortion forjy(k)j > 0:3 will not affect the level estimate.

5. CONCLUSION

We have developed level estimation algorithms for HMMs in col-
oured noise observed through nonlinear distortion. Subject to the
nature of the nonlinearity, maxima or minima of distorted HMM
outputs are shown to be usable for the purpose of level estimation
in very small signal-to-noise ratios.
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Figure 3: Extreme value distributions fitted to maxima.
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Figure 5: Extreme value distributions fitted to minima.


