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ABSTRACT

The �rst motivation for using Gaussian mixture models for

text-independent speaker identi�cation is based on the ob-

servation that a linear combination of Gaussian basis func-

tions is capable of representing a large class of sample distri-

butions. While this technique gives generally good results,

little is known about which speci�c part of a speech sig-

nal best identi�es a speaker. This contribution suggests a

procedure, based on the Jensen divergence measure, to au-

tomatically extract from the input speech signal the part

that best contributes to identify a speaker. Experiments

conducted using the Spidre database indicate a signi�cant

improvement in the performance of the speaker recognition

system.

1. INTRODUCTION

An important application of speech analysis, automatic

speaker recognition, is a subject of many recent studies.

One application concerns the possibility of verifying a per-

son's identity prior to admission to a secure facility or to

a transaction over the telephone. To attain this goal many

algorithms, based on some measures of speaker variability,

have been proposed in the literature. One of the most pop-

ular is the Gaussian Mixture Model (GMM), often used in

text-independent speaker identi�cation [1]. This technique

involves �rst a speech analysis process whose role is to ex-

tract from the input speech signal a set of feature vectors

which re
ect a person's vocal tract structure. These vec-

tors are used in a second step, during the training phase,

to evaluate the model, � = fpm; �m;�mg, characterizing

each speaker. Generally, each individual component Gaus-

sian, corresponding to a �xed value of m, is interpreted to

represent some broad acoustic classes.

Because the whole utterance is used during the train-

ing and the identi�cation process, it is di�cult to identify

which set of acoustic classes representing some broad pho-

netic events, such as vowels, nasals or fricatives, contribute

or do not contribute to identify a speaker. Since speaker

recognition, especially in text-independent cases, depends

primarily on accurate model estimation, special attention

must be directed toward e�cient modeling of each speaker.

This paper suggests a procedure, based on the Jensen diver-

gence measure [2], to automatically extract from the input

speech signal the part that best contributes to identify a

speaker. The results obtained with this technique give a

con�dence interval for its use in the speaker recognition

process.

The rest of this paper is organized as follows. Section 2

gives an overview of the Gaussian mixture models, section

3 presents the Jensen di�erence measure, sections 4 and 5

explain how this measure is used in this paper, section 6

describes the test procedures and presents some compar-

ative results between two di�erent systems and section 7

summarizes this contribution.

2. GAUSSIAN MIXTURE MODEL

Unlike the clear correlation between phonemes and spec-

tral resonances, there are no acoustic cues speci�cally or

exclusively dealing with speaker identity. Most of the pa-

rameters and features used in speech analysis contain infor-

mation useful for the identi�cation of both the speaker and

the spoken message. Indeed a mel-cepstral feature represen-

tation [3] is often used; this is also the case in this paper,

as well in speech as in speaker [1] recognition systems.

The two types of information, however, are coded quite

di�erently. In a speech recognition system, decisions are

made for every phone or word; a speaker recognition sys-

tem requires only one decision, based on parts or all of a

test utterance. One of the most common methods used in

text-independent cases, where training and testing involve

di�erent phrases, is the Gaussian mixture model (GMM).

According to this approach, each speaker is represented by

a model �,

� = fpm; �m;�mg; m = 1; � � � ;M; (1)



where M is the number of component densities of the form:

bm(x) =
1

(2�)D=2j�mj1=2
exp(�

1

2
(x� �m)

0

��1m (x� �m)):

(2)

�m and �m are respectively the mean vector and covari-

ance matrix and x is a feature vector of dimension D. The

Gaussian mixture density is given by:

p(xj�) =

MX

m=1

pmbm(x): (3)

pm are the mixture weights satisfying the constraint that

MX

m=1

pm = 1: (4)

The �rst motivation for using Gaussian mixture densities

as a representation of speaker identity is the intuitive notion

that the individual component densities of a multi-modal

density may model some underlying set of acoustic classes.

Given a set, X, of training feature vectors for a speaker,

the estimation of the model parameters, �, is generally per-

formed using the EM algorithm [4]. This algorithm can

be summarized as follows. The process begins with an

initial model �; a new model �
0

is estimated such that

p(Xj�
0

) � p(Xj�). The new model then becomes the initial

model for the next iteration and the process is repeated until

some convergence threshold is reached. Once the training

step has been completed, the automatic speaker identi�ca-

tion can take place.

The identi�cation process requires choosing which of the

N speakers known to the system best matches a given set

of feature vectors, xt, of dimension T . The objective is

then to �nd the speaker model which has the maximum a

posteriori probability for a given observation sequence, that

is, speaker n will be identi�ed if

p(�njX) > p(�kjX); 8k 6= n: (5)

Assuming that speakers are equally likely and observation

vectors, xt, are statistically independent, it can be shown

that the rule of decision consists of associating speaker n to

the test voice if:

TX

t=1

log p(xtj�n) >

TX

t=1

log p(xtj�k); 8k 6= n: (6)

It is important to realize that the whole utterance is used

during the training and the testing procedures. Accordingly

it is di�cult to say which speci�c part of a speech signal,

representing some broad phonetic events, best identi�es a

speaker.

Section 3 explains brie
y the Jensen di�erence measure

[2] which will be used in section 4 to automatically extract

from the input speech signal the part that best contributes

to identify a speaker.

3. DIVERGENCE MEASURE

The Shannon entropy, de�ned by:

Hn(x) = �

nX

i=1

xi log xi; (7)

is one of the most widely used indices of diversity of a multi-

nomial distribution, x = (x1; � � � ; xn) where xi � 0 andP
i
xi = 1. The concavity of Hn(x) permits de�ning the

diversity of a mixed distribution, x+y
2
, as

Hn(
x+ y

2
) =

1

2
[Hn(x) +Hn(y)] + Jn(x; y): (8)

The �rst term of the second part of the equation,
1

2
[Hn(x) + Hn(y)], is interpreted as the average diversity

within the distributions. The second term given by:

Jn(x; y) = Hn(
x+ y

2
)�

1

2
[Hn(x) +Hn(y)]; (9)

which has been called the Jensen di�erence [2], is non-

negative and vanishes if and only if x = y. Jn(x; y) can

then be used as a natural measure of divergence between

two vectors in a convex set of n-dimensional real vector

space. If x is similar to y, the value of Jn(x; y) will be rela-

tively small. Inversely if x is quite di�erent from y the value

of Jn(x; y) will be relatively high.

Our intention in this paper is to use the Jensen di�erence

measure to make a selection from among a set of vectors.

Let us assume that x is a �xed vector and Z = fz1; � � � ; zmg

is a set of vectors; by evaluating the Jensen di�erence be-

tween x and each element, zi, of Z, we can �nd a subset of

vectors of Z that are closer to x according to some similarity

criteria. In the next section, we describe how this measure

is used to select from the whole input speech signal the parts

that best identify a particular speaker.

4. INPUT-SPEECH CLASSIFICATION

According to the rule of decision, de�ned by equation 6, the

identi�ed speaker, n, is the one for which the sum of the

elements, log p(xtj�n), over all of the input utterance, T ,

is greater than the term appearing on the right side of the

equation and for all values of k 6= n. Clearly there must

exist some values of t for which

log p(xtj�n) � log p(xtj�k); 8k 6= n: (10)



The subset of vectors xt for which the preceding equation

is true does not really contribute to identifying a speaker.

In this paper, we suggest a procedure to quantify the con-

tribution of each feature vector, xt, in the decision scheme,

according to the following algorithm: let us assume that

there are N known speakers represented by a model �n in

the system; we evaluate for each input feature xt, a second

vector wt whose elements, wtn, are given by:

w
t
n =

log p(xtj�n)P
i
log p(xtj�i)

; n = 1; � � � ; N: (11)

Each element, wtn, shows the accuracy of a given model,

�n, producing an observation vector xt. Clearly if wtn are

similar for all values of n, the feature vector, xt, does not

really contribute to the identi�cation process. Inversely if

the elements, wtn, are not similar, that is, if for some values

of n, wtn are low and for some other values of n wtn are high,

it is reasonable to conclude that this particular vector, xt,

contributes to the identi�cation process.

To quantify the similarity between the elements wtn of

wt, we evaluate the Jensen di�erence between the vector

wt and a reference vector, r, whose elements rn are given

by:

rn =
1

N
; n = 1; � � � ; N: (12)

Since the elements of r are all equal, it results that the

Jensen di�erence between wt and r:

JN (w
t
; r) = HN(

wt + r

2
)�

1

2
[HN (w

t) +HN (r)]; (13)

is close to zero if and only if the elements of wt are all sim-

ilar. Indeed if JN (w
t; r) = 0, the probability that a model

�n produces an observation vector, xt, is the same for all n

because wt = r, and accordingly xt does not contribute to

the identi�cation process, which is not the case if JN (w
t; r)

is quite di�erent from zero.

The example shown in �gure 1 is intended as prelimi-

nary evidence about the capacity of the Jensen di�erence

measure in helping discriminate between subsets of input

vectors, xt, that are more relevant than others for the

speaker recognition task. The waveform shown in �gure

1 (a) corresponds to the sentence: \Hi, Carolyn, dear, are

you reading the papers". If our intuitive feeling is that un-

voiced consonants like /s/ or /ch/ are not really relevant

for speaker recognition, the curve shown in �gure 1 (c) also

shows some other preliminary information. The value of

the Jensen di�erence measure is greater in the transitions

between phonemes than in the stable parts of phonemes,

which suggests that transitions between phonemes are more

relevant than stable parts of phonemes in the speaker recog-

nition process. Obviously these results are closely related

to the type of input features, MFCC, used in this analy-

sis. Futher investigations using other kinds of input pa-

rameters have to be conducted before concluding about the

contribution of di�erent classes of phonemes in the speaker

recognition process.
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Figure 1. a) waveform, b) wideband spectrogram,

c) Jensen Di�erence values, all for a typical sen-

tence.

5. ENHANCEMENT OF GAUSSIAN

MIXTURE MODELS

The principle described above is used in this paper to en-

hance the gaussian mixture models [5] as follows: In a �rst

step, the whole utterance for each speaker is used to esti-

mate a �rst set of models �1 corresponding to the classical

GMM approach. In a second step, using the same utter-

ance, an evaluation of JN (w
t; r) is made for each vector xt.

Those for which JN (w
t; r) is below a certain thresold, �,

are discarded; the remaining ones are used to evaluate a

second set of models �2. The training phase then produces

two sets of models, �1 and �2.

The recognition phase is implemented according to the

same principle; in a �rst step, using the set of models �1,

some input vectors xt are discarded following the divergence

measure JN (w
t; r). The remaining ones are used in a sec-

ond step, using the second set of models �2 to identify the



speaker. The rule of decision is now dictated as follows: an

input signal characterized by a set of vectors xt will be as-

sociated to a particular speaker, n, during the identi�cation

process if:

T
0

X

t=1

log p(x
0

tj�n) �

T
0

X

t=1

log p(x
0

tj�k); 8k 6= n: (14)

In this equation x
0

t is an input vector xt for which

JN (w
t; r) is greater than the thresold, �, and T

0

is the

total number of vectors xt meeting this condition. There

are no good theoretical means to guide one choosing �. Its

value has been �xed experimentally. The next section shows

results obtained when this technique is applied.

6. TESTS AND RESULTS

The evaluation of the system was conducted using a sub-

set of 20 speakers of the Spidre database. The vectors xt,

containing 15 static and dynamic coe�cients, are evaluated

following the MFCC algorithm [3]. The gaussian mixture

models, �1 and �2, containing 20 component densities, are

evaluated following the expectation maximisation (EM) al-

gorithm [4]. For each speaker the models are evaluated

using approximately 60 seconds of speech from one chan-

nel, channel A. The identi�cation is performed for di�erent

speech durations. Table 1 shows comparative results ob-

tained when the whole utterance is used and when only

some speci�c parts of the input utterance are used.

Duration Enhancement A B

1 second Not Applied 84.3% 40.2%

Applied 86.5% 42.6%

3 seconds Not Applied 92.02% 41.6%

Applied 93.9% 44.5%

5 seconds Not Applied 93.7% 43.3%

Applied 95.8% 45.3%

10 seconds Not Applied 99.1% 45.6%

Applied 99.3% 47.7%

Table 1. Comparative results between two di�erent

systems.

Results (A) are obtained when the same channel is used

for training and recognition. Results (B) are obtained when

the channel used for training is di�erent from the channel

used for recognition. It can be observed that the speaker

recognition system performs better when the suggested en-

hancement technique is applied. This is true for both cases

(A & B) and for di�erent durations as shown in Table 1.

7. SUMMARY

In this paper we have examined one of the most common

methods in a speaker identi�cation system, that is, the

Gaussian mixture model. Because this technique uses the

whole input speech signal during the training and the test-

ing procedures, it becomes di�cult to say which parts of

the speech signal best contribute to identify a speaker.

We have explored the possibility of using the Jensen dif-

ference measure to automatically extract from the input

speech the parts that best contribute to the identi�cation

process. The new proposed algorithm uses two sets of Gaus-

sian mixture models for speaker recognition. The �rst set

of models is evaluated using the whole input utterance of

each speaker; the second set of models is evaluated using the

subset of feature vectors for which the corresponding Jensen

di�erence measure is above a prede�ned thresold. Results

obtained with this technique give a good con�dence interval

for its use in the speaker identi�cation process.
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