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ABSTRACT

In an effort to increase the naturalness of concatenative speech
synthesis, large speech databases may be recorded. While it is
desirable to have varied prosodic and spectral characteristics in
the database, it is not desirable to have variable voice quality.
In this paper we present an automatic method for voice quality
assessment and correction, whenever necessary, of large speech
databasesfor concatenative speech synthesis. The proposed method
is based on the use of a Gaussian Mixture Model, GMM, to model
the acoustic space of the speakerof the database and on autoregres-
sive filters for compensation. An objective method to measure the
effectiveness of the database correction based on a likelihood func-
tion for the speaker's GMM, is presented as well. Both objective
and subjective results show that the proposed method succeeds in
detecting voice quality problems and successfully corrects them.
Results show a14:2% improvement of the log-likelihood function
after compensation.

1. INTRODUCTION

While good quality speech synthesis is obtained using concatena-
tion of a small set of controlled units (e.g. diphones) the avail-
ability of more units taken from large speech databases seems to
be the key for natural sounding text-to-speech systems. Increas-
ing the size of the database one increases the instances of the ba-
sic units (phonemes, diphones, etc.) that a synthesizer can use.
Then, to synthesize a text sentence, an approach known as unit
selection[1, 2], is needed to find an optimum set of basic units that
matches the desired prosodic features of the sentence. Thus the va-
riety of prosodic characteristics and spectral variations of the same
type of basic unit will either reduce the prosodic modifications
that a signal processing module needs to perform or eliminate any
prosodic modification (in case that the selected unit has prosodic
and spectral characteristics very close to the desired ones). By re-
moving the necessity of extended prosodic modifications, a higher
naturalness of the synthetic speech is achieved. While having
many different tokens for each basic unit is strongly desired, a
variable voice quality is not; if it exists, it will not only make the
concatenation task more difficult but also will result in a synthetic
speech with changing voice quality even within the same sentence.
Depending on the variability of the voice quality of the database
a synthetic sentence can be perceived from being ”rough” (even if
a smoothing algorithm is used at each concatenation instant), and,
in the worst case, as if different speakers utter various parts of a
sentence. Thus, inconsistencies in voice quality within the same
unit-selection speech database can degrade the overall quality of
the synthesis. On the other hand, if the unit selection procedure is

highly discriminative, it will exclude for concatenation units of the
database with a mismatch in voice quality. Then, however, the syn-
thesizer will only use part of the database while time (and money)
was invested to make the complete database available (recording,
phonetic labeling, prosodic labeling, etc.). In this case, increasing
the size of the database will not necessarily increase proportionally
the instances of units available for synthesis.

Recording large speech databases for speech synthesis is a
very long process with duration from many days to months. The
duration of each recording session can be as long as5 hours (in-
cluding breaks, instructions, etc.) and the time between contiguous
recording sessions can be more than a week. Thus, the probabil-
ity to have variations in voice quality from one recording session
to another (inter-session variability) as well as during the same
recording session (intra-session variability) is high. A reason for
the inter-session variability could be associated with a different
emotional or health situation of the speaker (e.g., an upcoming
cold) or with a difference in the recording equipment that is used
(microphone placement, amplifier settings, etc.) The main reason
for the intra-session variability is the fatigue of the speakerbecause
of the length of the recording session.

The problem of voice quality assessment for a given speech
database seems to have similarities with the speaker adaptation
problems in speech recognition. There, “data oriented” compen-
sation techniques have been proposed that attempt to filter noisy
speechfeature vectors to produce “clean” speech feature vectors [3].
However, in recognition it is the recognition score that is of inter-
est regardless of whether or not the adapted speech feature vector
really matches that of “clean” speech. Another domain which has
similarities with our problem is speech enhancement. Although in
this case the output is speech, the quality of the enhanced speech
is not as high as truly clean speech. The above discussion clearly
shows the difficulty of our problem: not only an automatic detec-
tion of quality is sought (so if there is no need for correction the
speech signal will not be modified) but in addition any modifica-
tion/correction of the signal has to result in speech of (extremely)
high quality. Otherwise the overall attempt to correct the database
has no meaning for speech synthesis. While consistency of voice
quality in a unit-selection speech database is, therefore, important
for high-quality speech synthesis, no method for automatic voice
quality assessment and correction in the context of text-to-speech
synthesis has been proposed yet.

In this paper we propose an automatic method for detection of
voice quality problems in a large speech database, as well as a cor-
rection method that preserves high quality. The detection method
is based on probabilistic criteria and makes use of a Gaussian Mix-
ture Model (GMM) for modeling the acoustic space of the speaker
of the database. The part of the database used for modeling is as-



sumed to be of high andacceptedspeech quality. The meaning
of the termacceptedwithin our application will be clarified in the
next sections. Building on the accepted foundation, the likelihood
that the estimated GMM has generated other parts of the database
is estimated and compared with a lower and an upper bound. For
each of the areas with low likelihood a corrective filter is estimated
based on linear prediction and average periodograms. Likelihood
values found before and after corrections are very correlated with
subjective results.

2. DETECTION OF VOICE QUALITY VARIABILITY

In this section we consider the detection of voice quality variabil-
ity. To represent the speaker of the database a Gaussian Mixture
Model (GMM) is used. The GMM is a parametric model suc-
cessfully applied in speaker identification [4]. A Gaussian mixture
density assumes that the probability distribution of the observed
parameters,O, is given by the following equation,

p(Oj�) =

MX
i=1

�ip(Oj�i); (1)

whereM is the number of the Gaussian components,�i repre-
sents the statistical frequency of each class in the observations and
p(Oj�i) denotes thep-dimensional normal distribution with mean
vector� and covariance matrix�. The complete Gaussian mix-
ture density is represented by the model,
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Let rn, n = 1; : : : ;N denote different recording sessions andrp
be the recording session with the preferred voice quality (reference
recording session). We denote the set ofL observation sequences
from rp as,
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using the Expectation-Maximization

(EM) algorithm [5]. Given the model�rp the log likelihood func-
tions
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are estimated forl = 1; : : : ; L, wherep(o(l)t j�rp) is given from (1).
The log likelihood function is a measure of how likely it is

that the model�rp has produced the set of observed samples. Us-
ing as learning set the firstk observations and thewholereference
recording session,rp, as test data, upper and lower bounds for the
log likelihood function,L, can be obtained. The distribution ofL
for the entirerp can be approximated with a uni-modal Gaussian
with mean�L and variance�2L.

Voice quality problems of the other recording sessions are then
detected by computing thez-score1 of the log likelihood function

1We assume that the sample size of each observation sequence is large
so that thet distribution can be approximatedby the standardz distribution

of observations from these sessions regarding the model�rp ,

z
l
ri =
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whereO(l)
ri denotes thelth observation from theri; (i 6= p) record-

ing session. Thus, detection turns into a hypothesis testing prob-
lem. The two hypotheses are thenull hypothesis, denoted byH0:
rp and thelth observation fromri have the same voice quality
(rp � ri(l)), and thealternativehypothesis denoted byH1: rp
and thelth observation fromri have different voice qualities (rp 6�
ri(l)). The level of alpha error (the probability of being wrong
whenever the null hypothesis is rejected, or Type 1 error) used was
0:01.

3. COMPENSATION

For each part of the database where the hypothesisH0 has been
rejected a corrective filter is assigned. While the characteristics of
unvoiced speech differ from those of voiced speech, it was decided
to use the same correction filter for both cases. This is motivated
by the fact that the system tries to detect and correctaveragedif-
ferences in voice quality. For a subset of our applications (e.g.,
detection of different microphone positions), this kind of variabil-
ity is assumed to be identical for voiced and unvoiced sounds. In
other cases, for example, if we aim at detecting speaker fatigue at
the end of a recording session, voiced and unvoiced sounds might
be affected in different ways. However, estimating two corrective
filters, one for voiced and one for unvoiced sounds, would result
in degradation of the corrected speech signals whenever a wrong
voiced/unvoiced decision is made. Therefore, we only estimated
one corrective filter.

First, the average power spectral density (psd) from the refer-
ence databaserp is estimated using a modified periodogram,

Prp (f) =
1

jjwjj2K

KX
t=1

P
(l)
t (f) (6)

wherew is a hamming window,K is the total number of speech
frames extracted from the reference database andP

(l)
t (f) is given

by

P
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wherest is a speech frame from thelth observation sequence at
time t.

Next, for the observations where hypothesisH0 is rejected the
average psd,P(l)

ri (f)
2, is estimated in the same way as in Eq. (6).

Observations from the same database and with similar likelihood
scores are grouped together in a new observation set, and on this
new set the average psd is estimated.

Lastly, the autocorrelation function,�(l)ri (�), is estimated as

�
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2Reminder:P(l)
ri (f) denotes the average power spectral density of the

lth sequence from the recording sessionri



Given the autocorrelation samples�(l)ri [k] for k = 0; 1; : : : ; q, the
coefficients of an AR (autoregressive) corrective filter of orderq
may be determined by solving a set ofq linear equations (Yule-
Walker equations) [6]. Filtering the speech signal from ther(l)i
session with the obtained AR corrective filter, the distance between
the psd of reference and the psd of the filtered data,Ô

(:)
ri , is de-

creased while the likelihood of the filtered data,L(Ô(:)
ri j�rp), is

increased. In all of our experiments, the filtered speech data was
judged in informal listening tests as having the same voice quality
as that of the reference.

4. OBJECTIVE EVALUATION

Because the statistic decision of rejecting or accepting the hypoth-
esisH0 has been based on the likelihood that the model�rp has
produced the observations from the recordingsri, we picked the
obvious choice: as measure of the effectiveness of the compensa-
tion method we use the values of the log-likelihood function of the
filtered data for the model�rp : L(Ô(m)

ri j�rp), whereÔ(m)
ri is the

mth observation sequence from the filtered part of theri session.

5. IMPLEMENTATION

The voice quality compensation system is based on the use of
GMM and of AR corrective filters. In this section, practical is-
sues on the estimation of GMM parameters, on the order of AR
filters and on the implementation of the system, are described.

The parameters of the GMM are estimated by the EM algo-
rithm. In the present work, the GMM parameters are initialized by
a standard binary splittingVector Quantization, (VQ), procedure:
the weight, mean vector and covariance matrix of each component
are estimated independently using the clusters obtained by VQ of
the vectors extracted from the reference database. We decided to
use diagonal covariance matrices for the GMM, in effect assum-
ing statistical independence between each extracted vector. The
speaker of the database was modeled by a64 component GMM.
The model was trained using 16-dimensional mel-cepstral vectors.
It is important to note that in contrast with compensation methods
in a speaker recognition task, where feature vectors are normalized
by removing the long-term mean of the vectors prior to modeling
by GMM, the vectors used here are not normalized. This is be-
cause we want first to detect any kind of “mismatch” between the
reference and the testing database and then remove it; it is not
desirable for our application to “blindly” normalize the feature
vectors and then try to detect variabilities in voice quality. An-
other difference with the compensation methods used in speaker
recognition is that the first cepstrum coefficient has been included
into the training and testing process. Again, the main reason is
that this coefficient carries useful information in our task i.e., the
level of a recording session. The mel-cepstral data were extracted
from non-overlapped segments. The sampling frequency used was
16kHz. The analysis frame (and rate) was10msec while low-
energy segments were excluded from the analysis. The size of the
Fast Fourier Transform (FFT) for the estimation of power spec-
tral densities was set to256 and the order,q, of the AR corrective
filters was5.

6. RESULTS AND DISCUSSION

The voice quality detection and compensation system presented
here was tested on a task of comparing3 recording sessions:r1; r2;
and r3. The text used for these recordings was from the Wall
Street Journal. Because of the same domain of the text, it was
desired to have the same quality of voice for all recordings. The
sampling frequency for the speech files was 16kHz. The length
in minutes of each recording session, when small energy (e.g., si-
lence) signals are excluded, was:r1: 68 minutes,r2: 118 min-
utes andr3: 60 minutes. In order to select the reference database
we decided to build a GMM in each of these sessions and mea-
sure their intra-session variability. The session with the smallest
variance in log-likelihood is considered to be ofacceptedqual-
ity and was selected as reference. In addition to this criterion, an
experienced listener (with experience in testing voice quality for
speech synthesis) was asked to check samples from the previously
selected recording session to assure that the quality of speech was
acceptable. Each GMM was trained using approximately60; 000
16-dimensional mel-cepstral vectors (10 minutes) extracted from
the beginning of each session (no fatigue effects were expected).
To measure intra-session variability,each of the sessions was seg-
mented into3 minutes segments and the average log-likelihood in
each segment was estimated. Fig. 1 shows the results for the three
recording sessions. Note that as the first segments have been used
for GMM training, the log-likelihood for these segments will be
higher compared to the other segments. Also for plotting purposes,
only 20 segments from each session were used, but covering the
complete session (from the start until the end of the session). The
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Figure 1: Intra-variability of recording sessions:r1 solid line,r2
dashed line andr3 dash-dotted line.

scores shown in Fig. 1 are the average log-likelihood from each
segment with reference model�ri . The functionsL(O(l)

r1 j�r1),
L(O

(l)
r2 j�r2) andL(O(l)

r3 j�r3) are represented by a solid line, a
dashed-line and a dash-dotted line, respectively. For comparison,
the score from a different speaker (of the same gender, female,
and approximately the same range of fundamental frequency val-
ues) using any model of�ri , (i = 1; 2; 3), was found to be around
4. Fig. 1 also shows that the recording session with the smaller
variability wasr3. Therefore, it was selected as the reference ses-
sion,rp. As discussed earlier, the intra-session variability shown
in Fig. 1 can be explained by effects of the duration of the record-
ings (e.g., fatigue after many hours of recordings) or by slightly
different positions of the microphone during the recording. The



other two sessions have bigger variance thanr3 with r2 having the
largest. In fact,r2 was the longest recording session.

Fig. 2 shows the log-likelihood functionsL(O(l)
ri j�rp) using

a solid line fori = 1, a dashed line fori = 2 and a dash-dotted
line for i = 3 (p = 3). In the same figure the confidence inter-
val of 99% for the reference session,r3, is represented by the two
straight solid lines. An important point to note is thatr2 has a sig-
nificant lower average log-likelihood score compared to those of
the other two recordings. After investigating this point, it was dis-
covered that duringr2 the pre-amplifier used had malfunctioned,
affecting the recording in a similar way as a pre-emphasis filter
does. It has also reported that during the first recording,r1, the po-
sition of the head-mounted microphone had to be corrected quite
often. The overall average log-likelihood per session was: forr1,
9.0974, forr2, 8.0646 and forr3, 9.6506. The voice quality dif-
ference betweenr2 andr3 (or r1) has been noted by several lis-
teners. On the other hand, it was not possible to hear any differ-
ence betweenr3 andr1. These findings are in agreement with the
log-likelihood scores. The segments with a log-likelihood score
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Figure 2: Inter-variability of recording sessions:r1 solid line, r2
dashed line andr3 dash-dotted line.

smaller than the lower limit of the confidence interval were cor-
rected using the technique described in Section.3. Fig. 3 shows the
log-likelihood scores,fL(Ô(l)

ri j�rp)gi=1;2 , after correction. The
average log-likelihoods after correction was9:2654 and 9:2160
for r1 andr2, respectively. This is an improvement of1:84% for
r1 and14:27% for r2.

An informal listening test was carried out using5 listeners
who were familiar with the speaker's voice (members of our TTS
group at AT&T) and with experience in voice quality assessments.
In addition, we used5 other listeners with experience in assess-
ments of speech coding quality, but unfamiliar with the speaker's
voice. All listeners were able to detect the voice quality differ-
ence between the sessionr2 and the two other sessionsr1 andr3
before compensation, while after compensation no difference was
detected. Again, listeners were unable to detect differences be-
tweenr1 andr3 before or after compensation (for the corrected
segments ofr1). It is also important to report that listeners did not
notice any degradation of quality due to the correction process.
The system described here is now an integrated component of our
recording paradigm, insuring a consistent voice quality.
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Figure 3: Inter-variability of recording sessions:r1 solid line,r2
dashed line andr3 dash-dotted line.

7. CONCLUSION

In this paper we presented a system for automatic voice quality
assessment and compensation. The method is based on Gaussian
Mixture Models and AR filtering. Given a set of different record-
ing sessions of the same speaker (widely now used for text-to-
speech systems based on concatenation of acoustic units extracted
from large databases), the proposed system is able to automati-
cally select a recording session as reference, set statistical decision
thresholds for compensation, and correct the segments from the
recordings where needed. The quality of speech signals after cor-
rection is high. Results from subjective listening tests are corre-
lated with the decisions that the system makes automatically. The
effectiveness of the system was verified by estimating the post-
correction likelihoods and by corresponding listening tests.
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