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ABSTRACT apply to a wide variety of input signals. This allows processing

. N hem without a priori knowledge of signal contents or separate
A system was designed, which is able to detect the perceptu uning of parameters.

onsets of sounds in acoustic signals. The system is general in
regard to the sounds involved and was found to be robust for dif-The realized system was validated by applying it to the detection
ferent kinds of signals. This was achieved without assuming regu-of onsets in musical signals. This was done mainly for two rea-
larities in the positions of the onsets. In this paper, a method issons. First, musical signals introduce a rich variety of sounds with
first proposed that can determine the beginnings of sounds tha@ wide range of pitches, timbres and loudnesses. Different combi-
exhibit onset imperfections, i.e., the amplitude envelope of which nations of onsetting and backgrounding sounds are readily availa-
does not rise monothonically. Then the mentioned system isble. Second, verifying the contents of a musical signal is
described, which utilizes band-wise processing and a psychoasomewhat easier than in the case of environmental sounds. Also
coustic model of intensity coding to combine the results from the the concept of a perceivable onset is better defined. It should be
separate frequency bands. The performance of the system waoted, however, that the algorithm is not limited to musical sig-
validated by applying it to the detection of onsets in musical sig- hals, because the regularities and rhythmic properties of musical
nals that ranged from rock to classical and big band recordings. signals are not utilized in the detection process. The system per-
forms reliably for input signals that ranged from rock music to
classical and big band recordings, both with and without drums.

1. INTRODUCTION

2. SYSTEM OVERVIEW
Onset Qetect|on plays an |mportanF rolle in the computatlonlall S€0he earliest onset detection systems typically tried to process the
mentation and analysis of acoustic signals. It greatly facilitates

. I . . amplitude envelope of a signal as a whole (see e.g. [7]). Since this
y y band-wise processing. Scheirer was the first to clearly point out

tion and timing, or passed for further analysis and recognition forthe fact that an onset detection algorithm should follow the

example in an acoustic supervision system. human auditory system by treating frequency bands separately
We use the ternonset detectiorio refer to the detection of the and then combining results in the end [4]. An earlier system of
beginnings of discrete events in acoustic signals. A percept of arBilmes’s was on the way to the same direction, but his system
onset is caused by a noticeable change in the intensity, pitch oonly used a high-frequency and a low-frequency band, which was
timbre of the sound [1]. A fundamental problem in the design of not as effective [2].

an onset detection system is distinguishing genuine onsets fron%cheirer describes a psychoacoustic demonstration on beat per-
gradual changes and modulations that take place during the ring-

> . ception, which shows that certain kinds of signal simplifications
ing of a sound. This is also the reason why robust one-by-one P 9 P

detection of onsets has proved o be very hard to atain withoutdry o 5 002 SO P L2 ZECEEt (R A o8
significantly limiting the set of application signals. least four frequency bands and the corresponding bands of a noise
A lot of research related to onset detection has been carried out isignal are controlled by the amplitude envelopes of the musical
recent years. However, only few systems have set out to solve thsignal, the noise signal will have a rhythmic percept which is sig-
problem of one-by-one onset detection [1][2][3]. Instead, most nificantly the same as that of the original signal. On the other
systems aim at higher-level information, such as the perceivedhand, this does not hold if only one band is used, in which case
beatof a musical signal [4][5][6], in which case long-term auto- the original signal is no more recognizable from its simplified
correlations and regularities can be used to remove single errororm.

and to tune the sensitivity of the low-level detection process. The overview of our onset detection system is presented in

In this paper, we first propose a mathematical method to coperigure 1. It utilizes the band-wise processing principle as moti-
with sounds that exhibit onset imperfections, i.e., the amplitude vated above. First, the overall loudness of the signal is normalized
envelope of which rises through a complex track and easily pro-to 70 dB level using the model of loudness as proposed by Moore
duces erroneous extra onsets or an incorrect time value. Then wet al. [8]. Then a filterbank divides the signal into 21 non-overlap-
propose the application of psychoacoustic models of intensityping bands. At each band, we deteeset componentnd deter-
coding, which enable us to determine system parameters thamine their time and intensity. In final phase, the onset components
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are combined to yield onsets. We took an approach that effectively handles both of these prob-

Since we use psychoacoustic models both in onset componer€ms: We begin by calculating a first order difference function

detection, in its time and intensity determination, and in combin- D (t) = dg.t(A(t)) ,
ing the results, it is important to use a filterbank which can pro- . .
vide input to the models. Therefore, we choose a bank of nearl))NhereA(t) denotes the amplitude envelope funcid( is set to

critical-band filters which covers the frequencies from 44 Hz to zero Where_ signal is _below minimum audible fleld.' Then we
18 kHz. The lowest three among the required 21 filters are one-d1Vid€ the first order difference function by the amplitude enve-
octave band-pass filters. The remaining eighteen are third-octavé2P€ function to get a first ordeelative difference function W

band-pass filters. All subsequent calculations can be done on&® the amount Of c_hange in rela_tion to the signa_l level. This is the
band at a time. This reduces the memory requirements of theame as differentiating the logarithm of the amplitude envelope.

algorithm in the case of long input signals, assumed that parallel W () = dgt(log (A(D))

processing is not desired. We use the relative difference functig¥t) both to detect onset

The output of each filter is full-wave rectified and then decimated components and to determine their time. This is psychoacousti-
by factor 180 to ease the following computations. Amplitude cally relevant, since perceived increase in signal amplitude is in
envelopes are calculated by convolving the band-limited signalsrelation to its level, the same amount of increase being more
with a 100 ms half-Hanning (raised cosine) window. This window prominent in a quiet signal. According to Moore, the smallest
performs much the same energy integration as the human auditorgetectable change in intensity is approximately proportional to the
system, preserving sudden changes, but masking rapid modulaintensity of the signal [10]. That ial / I, the Weber fraction, is a

tion [9][4]. constant. This relationship holds for intensities from about 20 dB
to about 100 dB above the absolute threshold. The function
3. CALCULATION OF ONSET COMPONENTS Al (t) /1 (t) is equivalent toW(t), since the frequency in

I (t) = A(t) ¥ is reduced in the division. Thus we detect onset
components by a simple peak picking operation, which looks for
Several algorithms for picking potential onset candidates from anpeaks above a global threshdlg,in the relative difference func-
amplitude envelope function have been presented in the literaturgjon \(t).

[5][6][2][4]- Despite the number of variants, practically all of
them are based on the calculation of a first order difference func
tion of the signal amplitude envelopes and taking the maximum
rising slope as an onset or an onset component.

3.1 Onset Component Detection

The relative difference function effectively solves the abovemen-
tioned problems by detecting the onset times of low sounds ear-
lier and, more importantly, by handling complicated onset tracks,
since oscillations in the onset track of a sound do not matter in
In our simulations, it turned out that the first order difference re|ative terms after its amplitude has started rising. To clarify this,
function reflects well the loudness of an onsetting sound, but itsye plotted the absolute and relative difference functions of the

maximum values fail to precisely mark the time of an onset. This gnset of a piano sound in Figure 2. Both of the benefits discussed
is due to two reasons. First, especially low sounds may take somean pe seen clearly.

time to come to the point where their amplitude is maximally ris- .

ing, and thus that point is crucially late from the physical onset of 3-2  Intensity of an Onset Component

a sound and leads to an incorrect cross-band association with thgimultaneously occurring sounds are mixed by a linear summa-

higher frequencies. Second, the onset track of a sound is mosfion. In determining the intensity of an already detected onset

often not monotonically increasing, and thus we would have sev-component, we can assume the level of backgrounding sounds to



be momentarily steady and take the increase in level to be due tdoudness ¢B)
the onsetting sound(s). Thus the asked intensity can be pickecé.
from the first order difference functioB(t), multiplied by the 45
band center frequendy. The intensity is needed later when onset 40~
components are combined to yield onsets of the overall signal.  35-

An appropriate point in time to pick the intensity fr@rt) is not 30
as early as where the onset was determined to occur. Instead, w 25t -t --F--F1-FF1-Fi-Ft-FH-fE - 441
scan forward up to the point where amplitude envelope starts 5 ‘i H ]

decreasing and determine the intensity at the point of maximum ‘ | Ll 1 il ‘Jf

slope, i.e., at the maximum value Bft) between the onset and
Figure 3. The loudnesses of onsets as a function of their

the point where amplitude stops increasing.

After intensities has been determined for all onset components at time. The genuine onsets can now be quite easily discerned.
the band, we check them through and drop out components that

are closer than 50 ms to a more intense component. Remaining 5. VALIDATION EXPERIMENTS

ones are accepted.
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The presented procedure was verified by testing its performance
in detecting onsets in musical signals. The signals were selected
4. COMBINING THE RESULTS FROM THE BANDS to comprise a large variation of musical instruments and a wide

In the final phase we combine onset components from separatdynamic and pitch range. Signals both with and without drums

bands to yield onsets of the overall signal. For this purpose, wewere included. Another goal was to include representative

implemented the model of loudness as proposed by Moore, Glasexcerpts from different musical genres, ranging from jazz and

berg and Baer [8]. Input to our implementation is a vector of rock to classical and big band music.

sound intensities at third-octave bands between 44 Hz and .
) Approximately ten second excerpts were sampled from each per-
18 kHz, from which the program calculates the loudness of the PP y P P b

. ! - : - formance. These periods were carefully inspected and their onset
signal in phons. To optimize the computational efficiency of the

d liahtly simolified th del b king the sh times were marked. The excerpts were then feeded to the onset
procedure, we sightly simpiified the model by making the Shape oo igpy system and its results were compared to the manual
of the excitation pattern, i.e., the intensity spread between adja

t critical bands ind dent f d level. Thi transcription. All simulation cases were computed using the very
cent critica’ bands Independent from sound pressure 1evel. TS, e set of parameter values and thresholds, without separate tai-
accelerated the computations remarkably, but did not make a slgA-e

ificant diff o th timated loud | for th oring for each simulation case. The algorithm itself was as
nificant ditierence fo the estimated foudness values for the soun xplained above. Higher-level rhythmic properties and regulari-
intensity levels we are using.

ties of musical signals were not utilized in the detection.

The onsets of the overall signal are calculated as follows. First thelt is interesting to note that the limitations of our detection system

ondset co(rjnponents ];IrocT dlﬁerer;t banc:s argi dall sor:ted Ifrt] t"I:_Eresemble those of human perception. We defipgeado-onseb
order, and are régarded as sound onset candidates hereafter. 8 a sound beginning, which undisputably exists in a signal, but

each onset canqlldate Is assigned a Iouo!ness value, \_Nh'Ch IS CaICléé\nnot be detected by a human listener if the signal is not pre-
lated by collecting onset components in a 50 ms time window

d th didat d feeding their intensities to th sented in short segments and several times. Since objective listen-
around the candidate and feeding their intensities to the COrre'ing test could not be arranged, we regard undetected pseudo-onset
sponding frequency bands of the loudness model of Moore et al

Si ¢ didates h | le of tributi as errors, too. It turned out that the detection of some pseudo-
Ince most candidates have only a couple of contributing Onsebnsets could not be achieved without giving rise to several erro-

Eomkponen:js at.dlfftlerenlt ]E)antc:]s, Wti mf‘t lése. m't?]'mgm va?‘thorneous extra onsets that are due to gradual changes and modula-
ackground noise level for the other bands in the input o eglons during the ringing of sounds.

model. Repeating this procedure to each onset candidate yields
vector of candidate loudnesses as a function of their times, a$nset detection results for ten different musical signals are sum-
illustrated in Figure 3 for a popular music signal. marized in Table 1. The total number of onsets, number of unde-

Onset loudnesses that were estimated using the abovementinet cted onsets and the number of erroneous extra onsets are given.
9 measure of correctness in the rightmost column is calculated as

procedure corresponded very well to the perceived loudnesses of
the onsets in verificative listening tests. It turned out that a robust  correct = total - undetected extra (100%.
detection of onsets in very diverse kinds of signals can now be . ) _total

: X L . : A more detailed discussion of each case follows.
achieved by a simple peak picking operation, which looks for
onset candidates above a global threshold vajyg. We drop Chopiris classical piano etude (op. 25, no. 4) was a trivial case.
out onset candidates whose loudness falls below the thresholdStill three onsets fell below threshold because the notes were low
Then we also drop out candidates that are too close (50 ms) to aitched, played softly and masked by other nod®i Meolds
louder candidate. Among equally loud but too close candidates,Orient Blue’ represents a much more difficult case. The piece is
the middle one (median) is chosen and the others are abandonegolyphonic and employs the whole dynamic and pitch range of
The remaining onset candidates are accepted as true ones. A godlde acoustic guitar. Shortest inter-note intervals are only a fif-
value forT,5 was found to be 25 dB for signals, whose average teenth of a second. Good results were achieved partly because of
loudnesses had been normalized to 70 dB level. the absense of noise and other instruments.




Table 1: Summary of onset detection results. 6. CONCLUSIONS

_ o onsetsunde correct We first discussed problems that arise in the one-by-one detection
signal | worth notice in contenfs ", " [ . Lextrd (%) of sound onsets. Then a system was described, which builds upon
the use of relative difference function and application of the psy-

Chopin acous.tic pigno 59 3 i 95 choacoustic models of intensity coding. This was done in the

AldiMeola| acoustic guitar 62| 5 1 92 framework of the band-wise processing idea. Experimental
Police | singing, el.guitar, drums 49 4(2) 1 90 results show that the presented system exhibits a significant gen-
u2 el. guitar rif, distorted 19 1 2 84 erality in regard to the sounds and signal types involved. This was

Grusin | piano, percussion, druns 51 3(2) |- 94 achieved without higher-level logic or a grouping of the onsets.

The system introduces only two thresholds that need to be experi-

¥ 2 L 91 mentally found, i.e., that are not deduced from psychoacoustic

MDavis brasses, double-bas

'

Miller big band 46| 5| 1] 87 metrics. These thresholds are common to all input signals.
Bach chamber ensemble 51 32 1 92 . C
. ) One of the shortcomings of our method lies in its inability to deal
Vivaldi | symphonyorchestra) 33 7 1D 48 i 4 strong amplitude modulation which is met in classical
Beethoven  symphony orchestra 30 |- P8 7  ensembles and in certain instrumental sounds. In general, the pro-

. s . ) . . posed system was well able to discern between genuine onsets
Polices ‘It's Alright for You’ is from rock music genre, domi- - .
and gradual changes and modulations in the sounds themselves.

nated in loudness by singing, electric guitars and drums. Onse‘ ! . o . .
- -~In the case of musical signals, an additional higher-level analysis
detection is a success and resembles the results that were derived

. . . would still significantly improve the accuracy of the system.
with other rock-pieces. At some moments singing produced dou- g y imp Y y

ble-onsets for phonem combinations like "-p_s-”_, where Ipathd _ 7. REFERENCES
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