
ABSTRACT

A system was designed, which is able to detect the perceptual
onsets of sounds in acoustic signals. The system is general in
regard to the sounds involved and was found to be robust for dif-
ferent kinds of signals. This was achieved without assuming regu-
larities in the positions of the onsets. In this paper, a method is
first proposed that can determine the beginnings of sounds that
exhibit onset imperfections, i.e., the amplitude envelope of which
does not rise monothonically. Then the mentioned system is
described, which utilizes band-wise processing and a psychoa-
coustic model of intensity coding to combine the results from the
separate frequency bands. The performance of the system was
validated by applying it to the detection of onsets in musical sig-
nals that ranged from rock to classical and big band recordings.

1.  INTRODUCTION

Onset detection plays an important role in the computational seg-
mentation and analysis of acoustic signals. It greatly facilitates
cut-and-paste operations and editing of audio recordings. The
onset information may also be used in audio/video synchroniza-
tion and timing, or passed for further analysis and recognition for
example in an acoustic supervision system.

We use the termonset detection to refer to the detection of the
beginnings of discrete events in acoustic signals. A percept of an
onset is caused by a noticeable change in the intensity, pitch or
timbre of the sound [1]. A fundamental problem in the design of
an onset detection system is distinguishing genuine onsets from
gradual changes and modulations that take place during the ring-
ing of a sound. This is also the reason why robust one-by-one
detection of onsets has proved to be very hard to attain without
significantly limiting the set of application signals.

A lot of research related to onset detection has been carried out in
recent years. However, only few systems have set out to solve the
problem of one-by-one onset detection [1][2][3]. Instead, most
systems aim at higher-level information, such as the perceived
beat of a musical signal [4][5][6], in which case long-term auto-
correlations and regularities can be used to remove single errors
and to tune the sensitivity of the low-level detection process.

In this paper, we first propose a mathematical method to cope
with sounds that exhibit onset imperfections, i.e., the amplitude
envelope of which rises through a complex track and easily pro-
duces erroneous extra onsets or an incorrect time value. Then we
propose the application of psychoacoustic models of intensity
coding, which enable us to determine system parameters that

apply to a wide variety of input signals. This allows processing
them without a priori knowledge of signal contents or separate
tuning of parameters.

The realized system was validated by applying it to the detection
of onsets in musical signals. This was done mainly for two rea-
sons. First, musical signals introduce a rich variety of sounds with
a wide range of pitches, timbres and loudnesses. Different combi-
nations of onsetting and backgrounding sounds are readily availa-
ble. Second, verifying the contents of a musical signal is
somewhat easier than in the case of environmental sounds. Also
the concept  of a perceivable onset is better defined. It should be
noted, however, that the algorithm is not limited to musical sig-
nals, because the regularities and rhythmic properties of musical
signals are not utilized in the detection process. The system per-
forms reliably for input signals that ranged from rock music to
classical and big band recordings, both with and without drums.

2.  SYSTEM OVERVIEW

The earliest onset detection systems typically tried to process the
amplitude envelope of a signal as a whole (see e.g. [7]). Since this
was not very effective, later proposals have evolved towards
band-wise processing. Scheirer was the first to clearly point out
the fact that an onset detection algorithm should follow the
human auditory system by treating frequency bands separately
and then combining results in the end [4]. An earlier system of
Bilmes’s was on the way to the same direction, but his system
only used a high-frequency and a low-frequency band, which was
not as effective [2].

Scheirer describes a psychoacoustic demonstration on beat per-
ception, which shows that certain kinds of signal simplifications
can be performed without affecting the perceived rhythmic con-
tent of a musical signal [4]. When the signal is divided into at
least four frequency bands and the corresponding bands of a noise
signal are controlled by the amplitude envelopes of the musical
signal, the noise signal will have a rhythmic percept which is sig-
nificantly the same as that of the original signal. On the other
hand, this does not hold if only one band is used, in which case
the original signal is no more recognizable from its simplified
form.

The overview of our onset detection system is presented in
Figure 1. It utilizes the band-wise processing principle as moti-
vated above. First, the overall loudness of the signal is normalized
to 70 dB level using the model of loudness as proposed by Moore
et al. [8]. Then a filterbank divides the signal into 21 non-overlap-
ping bands. At each band, we detectonset componentsand deter-
mine their time and intensity. In final phase, the onset components
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are combined to yield onsets.

Since we use psychoacoustic models both in onset component
detection, in its time and intensity determination, and in combin-
ing the results, it is important to use a filterbank which can pro-
vide input to the models. Therefore, we choose a bank of nearly
critical-band filters which covers the frequencies from 44 Hz to
18 kHz. The lowest three among the required 21 filters are one-
octave band-pass filters. The remaining eighteen are third-octave
band-pass filters. All subsequent calculations can be done one
band at a time. This reduces the memory requirements of the
algorithm in the case of long input signals, assumed that parallel
processing is not desired.

The output of each filter is full-wave rectified and then decimated
by factor 180 to ease the following computations. Amplitude
envelopes are calculated by convolving the band-limited signals
with a 100 ms half-Hanning (raised cosine) window. This window
performs much the same energy integration as the human auditory
system, preserving sudden changes, but masking rapid modula-
tion [9][4].

3.  CALCULATION OF ONSET COMPONENTS

3.1   Onset Component Detection

Several algorithms for picking potential onset candidates from an
amplitude envelope function have been presented in the literature
[5][6][2][4]. Despite the number of variants, practically all of
them are based on the calculation of a first order difference func-
tion of the signal amplitude envelopes and taking the maximum
rising slope as an onset or an onset component.

In our simulations, it turned out that the first order difference
function reflects well the loudness of an onsetting sound, but its
maximum values fail to precisely mark the time of an onset. This
is due to two reasons. First, especially low sounds may take some
time to come to the point where their amplitude is maximally ris-
ing, and thus that point is crucially late from the physical onset of
a sound and leads to an incorrect cross-band association with the
higher frequencies. Second, the onset track of a sound is most
often not monotonically increasing, and thus we would have sev-
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eral local maxima in the first order difference function near the
physical onset (see plots with a dashed line in Figure 2).

We took an approach that effectively handles both of these prob-
lems. We begin by calculating a first order difference function

,

whereA(t) denotes the amplitude envelope function.D(t) is set to
zero where signal is below minimum audible field. Then we
divide the first order difference function by the amplitude enve-
lope function to get a first order relative difference function W,
i.e., the amount of change in relation to the signal level. This is the
same as differentiating the logarithm of the amplitude envelope.

We use the relative difference functionW(t) both to detect onset
components and to determine their time. This is psychoacousti-
cally relevant, since perceived increase in signal amplitude is in
relation to its level, the same amount of increase being more
prominent in a quiet signal. According to Moore, the smallest
detectable change in intensity is approximately proportional to the
intensity of the signal [10]. That is,∆I / I, the Weber fraction, is a
constant. This relationship holds for intensities from about 20 dB
to about 100 dB above the absolute threshold. The function

 is equivalent toW(t), since the frequencyf in
 is reduced in the division. Thus we detect onset

components by a simple peak picking operation, which looks for
peaks above a global thresholdTdet in the relative difference func-
tion W(t).

The relative difference function effectively solves the abovemen-
tioned problems by detecting the onset times of low sounds ear-
lier and, more importantly, by handling complicated onset tracks,
since oscillations in the onset track of a sound do not matter in
relative terms after its amplitude has started rising. To clarify this,
we plotted the absolute and relative difference functions of the
onset of a piano sound in Figure 2. Both of the benefits discussed
can be seen clearly.

3.2   Intensity of an Onset Component

Simultaneously occurring sounds are mixed by a linear summa-
tion. In determining the intensity of an already detected onset
component, we can assume the level of backgrounding sounds to
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Figure 2. Onset of a piano sound. First orderabsolute
(dashed) andrelative (solid) difference functions of the
amplitude envelopes of six different frequency bands.

D t( ) d
dt
----- A t( )( )=

W t( ) d
dt
----- A t( )( )log( )=

∆I t( ) I t( )⁄
I t( ) A t( ) f⋅=



be momentarily steady and take the increase in level to be due to
the onsetting sound(s). Thus the asked intensity can be picked
from the first order difference functionD(t), multiplied by the
band center frequencyfB. The intensity is needed later when onset
components are combined to yield onsets of the overall signal.

An appropriate point in time to pick the intensity fromD(t) is not
as early as where the onset was determined to occur. Instead, we
scan forward up to the point where amplitude envelope starts
decreasing and determine the intensity at the point of maximum
slope, i.e., at the maximum value ofD(t) between the onset and
the point where amplitude stops increasing.

After intensities has been determined for all onset components at
the band, we check them through and drop out components that
are closer than 50 ms to a more intense component. Remaining
ones are accepted.

4.  COMBINING THE RESULTS FROM THE BANDS

In the final phase we combine onset components from separate
bands to yield onsets of the overall signal. For this purpose, we
implemented the model of loudness as proposed by Moore, Glas-
berg and Baer [8]. Input to our implementation is a vector of
sound intensities at third-octave bands between 44 Hz and
18 kHz, from which the program calculates the loudness of the
signal in phons. To optimize the computational efficiency of the
procedure, we slightly simplified the model by making the shape
of the excitation pattern, i.e., the intensity spread between adja-
cent critical bands independent from sound pressure level. This
accelerated the computations remarkably, but did not make a sig-
nificant difference to the estimated loudness values for the sound
intensity levels we are using.

The onsets of the overall signal are calculated as follows. First the
onset components from different bands are all sorted in time
order, and are regarded as sound onset candidates hereafter. Then
each onset candidate is assigned a loudness value, which is calcu-
lated by collecting onset components in a 50 ms time window
around the candidate and feeding their intensities to the corre-
sponding frequency bands of the loudness model of Moore et al.
Since most candidates have only a couple of contributing onset
components at different bands, we must use minimum level, or
background noise level for the other bands in the input of the
model. Repeating this procedure to each onset candidate yields a
vector of candidate loudnesses as a function of their times, as
illustrated in Figure 3 for a popular music signal.

Onset loudnesses that were estimated using the abovementined
procedure corresponded very well to the perceived loudnesses of
the onsets in verificative listening tests. It turned out that a robust
detection of onsets in very diverse kinds of signals can now be
achieved by a simple peak picking operation, which looks for
onset candidates above a global threshold valueTfinal. We drop
out onset candidates whose loudness falls below the threshold.
Then we also drop out candidates that are too close (50 ms) to a
louder candidate. Among equally loud but too close candidates,
the middle one (median) is chosen and the others are abandoned.
The remaining onset candidates are accepted as true ones. A good
value forTfinal was found to be 25 dB for signals, whose average
loudnesses had been normalized to 70 dB level.

5.  VALIDATION EXPERIMENTS

The presented procedure was verified by testing its performance
in detecting onsets in musical signals. The signals were selected
to comprise a large variation of musical instruments and a wide
dynamic and pitch range. Signals both with and without drums
were included. Another goal was to include representative
excerpts from different musical genres, ranging from jazz and
rock to classical and big band music.

Approximately ten second excerpts were sampled from each per-
formance. These periods were carefully inspected and their onset
times were marked. The excerpts were then feeded to the onset
detection system and its results were compared to the manual
transcription. All simulation cases were computed using the very
same set of parameter values and thresholds, without separate tai-
loring for each simulation case. The algorithm itself was as
explained above. Higher-level rhythmic properties and regulari-
ties of musical signals were not utilized in the detection.

It is interesting to note that the limitations of our detection system
resemble those of human perception. We define apseudo-onset to
be a sound beginning, which undisputably exists in a signal, but
cannot be detected by a human listener if the signal is not pre-
sented in short segments and several times. Since objective listen-
ing test could not be arranged, we regard undetected pseudo-onset
as errors, too. It turned out that the detection of some pseudo-
onsets could not be achieved without giving rise to several erro-
neous extra onsets that are due to gradual changes and modula-
tions during the ringing of sounds.

Onset detection results for ten different musical signals are sum-
marized in Table 1. The total number of onsets, number of unde-
tected onsets and the number of erroneous extra onsets are given.
A measure of correctness in the rightmost column is calculated as

%.

A more detailed discussion of each case follows.

Chopin’s classical piano etude (op. 25, no. 4) was a trivial case.
Still three onsets fell below threshold because the notes were low
pitched, played softly and masked by other notes.Al Di Meola’s
‘Orient Blue’ represents a much more difficult case. The piece is
polyphonic and employs the whole dynamic and pitch range of
the acoustic guitar. Shortest inter-note intervals are only a fif-
teenth of a second. Good results were achieved partly because of
the absense of noise and other instruments.
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Figure 3. The loudnesses of onsets as a function of their
time. The genuine onsets can now be quite easily discerned.
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Police’s ‘It’s Alright for You’ is from rock music genre, domi-
nated in loudness by singing, electric guitars and drums. Onset
detection is a success and resembles the results that were derived
with other rock-pieces. At some moments singing produced dou-
ble-onsets for phonem combinations like “-ps-”, where bothp and
s produce an onset. All of these occurred inside the 50 ms time
window, however, and were therefore fused.U2 is an electric gui-
tar rif, taken from the band’s performance of ‘Last Night on
Earth’. The excerpt is played with distorted sound, without
accompanying instruments. This case illustrates that even ambig-
uos situations, i.e., rough sounds, can be handled.Grusin’s ‘Punta
del Soul’ is classified to fusion jazz, but the selected excerpt
resembles mostly popular music. Various percussions included
were detected without trouble.

Miles Davis’s ‘So What’ introduces a selection of jazz band
instruments: a trumpet, tenor and alto saxophones, piano, plucked
double-bass and gentle drums. Both brass instrument onsets and
soft pluckings of the double bass were consistently detected.Glen
Miller ’s ‘In the Mood’ is dominated by big band’s brass instru-
ments of the performing orchestra. All undetections occurred in a
clarinet melody, which was partly masked by louder instruments.

Bach’s Brandenburg Concerto was sampled from the performance
of Munich Chamber Ensemble, which comprises strings, wood-
winds and brass instruments. It is worth notice that onsets were
detected even at moments where strings alone were carrying the
rhythm and played tying consecutive notes to each other.

As a sharp contrast to the robust detections, all symphony orches-
tra performances turned out to be resolved very poorly.Vivaldi’s
‘The Four Seasons’ andBeethoven’s Symphony No. 5 are given
as examples in Table 1. The clear discrepancy with human per-
ception is not due to the type of instruments involved, since they
were detected well in smaller ensembles. Instead, two causes are
supposed. Firstly, individual physical sound sources can no more
be followed in a symphony orchestra, but resulting onsets derive
from several sources and are smoothed. Secondly, it was revealed
by a certain hammond organ solo that a strong amplitude modula-
tion at the middle frequencies confuses the system. It seems that
the human auditory system has a special ability to ignore even a
very loud amplitude modulation if it is inconsistent, and to con-
centrate on frequencies where structure is found.

Table 1: Summary of onset detection results.

signal worth notice in contents
onsets
in total

unde-
tected

extra
correct

(%)

Chopin  acoustic piano 59 3 - 95

AldiMeola acoustic guitar 62 5 1 92

Police singing, el.guitar, drums 49 4(2) 1 90

U2 el. guitar rif, distorted 19 1 2 84

Grusin piano, percussion, drums 51 3(2) - 94

MDavis brasses, double-bass 34 2 1 91

Miller big band 46 5 1 87

Bach chamber ensemble 51 3(2) 1 92

Vivaldi symphony orchestra 33 7 10 48

Beethoven symphony orchestra 30 - 28 7

6.  CONCLUSIONS

We first discussed problems that arise in the one-by-one detection
of sound onsets. Then a system was described, which builds upon
the use of relative difference function and application of the psy-
choacoustic models of intensity coding. This was done in the
framework of the band-wise processing idea. Experimental
results show that the presented system exhibits a significant gen-
erality in regard to the sounds and signal types involved. This was
achieved without higher-level logic or a grouping of the onsets.
The system introduces only two thresholds that need to be experi-
mentally found, i.e., that are not deduced from psychoacoustic
metrics. These thresholds are common to all input signals.

One of the shortcomings of our method lies in its inability to deal
with a strong amplitude modulation which is met in classical
ensembles and in certain instrumental sounds. In general, the pro-
posed system was well able to discern between genuine onsets
and gradual changes and modulations in the sounds themselves.
In the case of musical signals, an additional higher-level analysis
would still significantly improve the accuracy of the system.
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