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ABSTRACT

This work presents a new electrocardiogram (ECG)
data compression method. By di�erentiating the sig-
nal and using proper thresholding, the ECG is �rst
segmented into a sequence of straight lines. The ver-
tices of these lines are used to encode the signal. The
decoding part works by applying Korenberg's Fast Or-
thogonal Search (FOS) method to reconstruct the orig-
inal signal. Simulation results have demonstrated the
e�ciency of the algorithm.

1. INTRODUCTION

ECG data compression is required for e�cient use of
storage capacity in computers and for fast transmission
of the digitized signals using the public dial{up phone
networks. In this paper, an ECG data compression al-
gorithm is described. The algorithm is comprised of
the encoder and decoder parts. The encoder works by
approximating the ECG signal using a piece-wise linear
approximation method. A �ve-point di�erentiation is
applied to generate the di�erential signal which is used
to segment the original signal into a set of line seg-
ments of positive, zero, and negative slopes. A slope
threshold value is used to properly identify the three
types of slope. The starting point of all segments will
then represent the encoded signal. These points actu-
ally encode the instants at which the direction of data
growth changes the most and thus represent the most
informative part of the signal. At the decoder side,
these points will be used to reconstruct a piecewise lin-
ear approximation of the signal. In order to obtain a
good representation of the original signal and to remove
the high frequency components introduced by the lin-
ear approximation, the Fast Orthogonal Search (FOS)
[1] used for time series analysis is employed. The FOS
method enjoys the property of identifying, with a large
degree of accuracy, the frequency components compris-
ing the signal even when the signal is corrupted with

noise or when some of the original points are being
missing, which is the case we are dealing with.

The paper is organized as follows. Section 2 de-
scribes the piecewise linear segmentation of the ECG
signal and the encoding process. Section 3 discusses
the application of the FOS method in the decoding
process. In section 4, results of applying the proposed
method to an ECG database comprised of six normal
and abnormal cases are analyzed in terms of the result-
ing compression ratio, reconstruction error, and visual
acceptability of the signal. The paper is �nally con-
cluded in section 5.

2. ECG SIGNAL SEGMENTATION

The basic idea of the algorithm is to select the mini-
mum number of data points which can be used at the
decoder to reconstruct the signal. These data points
have to be selected in such a way that they fairly con-
tain the important features of the signal, such as the
peaks of the QRS segment, its onset and end, the in-
tegrity of the S{T Segment, and the peaks of the P and
T waves. Some techniques, such as Turning Point [2],
AZTEC [3], SAPA [4], and CUSAPA [5] have employed
the idea of picking up the best candidate points which
can reproduce the signal within a small error.

In this work, the original signal is di�erentiated us-
ing a 5{point di�erence derivative formula [2]. If x[n]
denotes the nth ECG sample, then the derivative, x

0

[n]
is de�ned as

x
0

[n] =
1

10
(2x[n+ 2] + x[n+ 1]� x[n� 1]� 2x[n� 2]) :

When the di�erentiator is applied to the ECG signal
in Fig. (1), a set of line segments of di�erent slopes
is produced. Each segment will have its own length
and starting point (labeled � in �gure). The wave-
form shown can be expressed as the following segment
string: Z,P,Z,N,Z,N,P,N,Z,P,Z,N,Z where Z, P, and N
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Figure 1: Line segmentation of the ECG signal

stand for zero, positive, and negative slope segments,
respectively.

A Z{segment lying between an N(P)-segment and a
P(N)-segment indicates a valley (peak) point. It should
be noted that ECG waveforms are not so noise free as
indicated in the �gure. While the shown signal needed
only 13 line segments for proper representation, it is ex-
pressed as a string of over 20 segments. The extra seg-
ments are produced due to the noise superimposed on
the original signal. However, these extra segments are
informationless, in the sense of the information gained
from data behavior changes. Mostly, these segments
are of small length and lie between segments of the
same sign. Therefore, the resulting line segment string
is postprocessed to remove the noisy segments. By
identifying a line segment by the triplet: (Sign,Start,
Length), for line segment, i, the slope sign, the starting
point, and the length are expressed as Sign(i), Start(i),
and Length(i), respectively. If the length of the cur-
rent ith segment in the new string is less than a length
threshold value and the sign of the most recently saved
segment (i�1th segment) is the same as the sign of the
next segment (i+1th segment) then the three line seg-
ments are merged together. Also, if the length of the
most recently saved segment (i�1th segment) plus that
of the current segment (ith segment) is less than the
threshold, they too are merged. If the �rst (last) seg-
ment length is smaller than the threshold, it is merged
with the next(previous) one. The location and value
of the starting points of the �nal line segments will be
used to encode the ECG waveform.

3. FAST ORTHOGONAL SEARCH FOR

FREQUENCY ANALYSIS

The saved (or transmitted) points will be used to re-
construct the original signal. A time{series analysis
approach is adopted where a parsimonious sinusoidal
series (non{Fourier) which signi�cant frequencies, am-
plitudes, and phases are to be estimated in order to ap-
proximate the time-series data. It should be noted here
that the transmitted points need not be equi-distant.
Assuming that x[n]; n = 1; : : : ; N , represent the com-
pressed ECG time{series, the parsimonious sinusoidal

series representation can be expressed as

x[n] =
MX
m=0

am pm[n] + e[n] (1)

where
p0[n] = 1; (2)

and for i = 1; 2; � � �,

p2i�1[n] = cos !i n; p2i[n] = sin!i n;

and e[n] is the model error. The frequencies, !i, can
be selected by systematically searching through a set
of Nf candidate frequencies !a; a = 1; � � � ; Nf . It is
important to note here that the candidate frequencies
need not be commensurate, nor integral multiples of
a fundamental frequency, as it is required for the Fast
Fourier Transform. The selection of frequencies is car-
ried out by the fast orthogonal search (FOS) [6]. Ac-
cording to the FOS method, the di�erence equation (1)
may be expressed as

x[n] =
MX
m=0

gmwm[n] + e[n] (3)

where wm[n] are constructed from pm[n] using the mod-
i�ed Gram{ Schmidt procedure to be mutually orthog-
onal over the interval n = 0; : : : ; N . The coe�cients,
gm, are selected to minimize the mean-square error
(MSE) over this interval (the overbar denotes the time
average),

e2[n] = (x[n]�
MX
m=0

gmwm[n])2 = x2[n]�
MX
m=0

g2m w2
m[n]

(4)
Assuming that arpr was the last di�erence equation

term added to the model in (1), then it can be shown
that the addition of this term reduced the MSE error

by the amount Qr = g2rw
2
r where gr = x[n]wr [n]

w2
r
[n]

: The

pool of all candidate frequencies is searched in order
to select candidates which result in the greatest MSE
reduction. The construction of the functions wm[n] is
computationally intensive. The FOS method was de-
veloped in order to �nd a rapid and e�cient system
modeling. Having all pm[n] known apriori, the coe�-
cients am are estimated using a Cholesky decomposi-
tion [1]. The algorithm goes as follows. First a con-
stant term, g0 = x[n], is introduced using (2). Next
the candidates terms will be searched to select the
proper frequencies. Adding the ith term pair, Ti =
a2i�1 p2i�1[n]+a2i p2i[n] to the model of (1) decreases
the MSE amount by the value

Qi = g22i�1!
2
2i�1 + g22i!

2
2i



At the stage of adding the ith term pair, M = 2i, the
quantity Qi is evaluated for each available candidate
frequency. The frequency with the largest Qi value is
selected. The algorithm saves a substantial amount of
computation by avoiding doing calculations previously
performed at earlier searches. The search continues
until the MSE in (4) becomes smaller than a certain
threshold.

4. SIMULATION RESULTS

The proposed compression algorithm is applied to a
set of ECG signals. The signals are sampled at 200 Hz
and quantized using 12 bits/sample. The set represents
both normal and abnormal cases. To assess the algo-
rithm, several performance evaluation measures were
analyzed. These measures are: the Compression Ra-
tio, CR = N

P
where N is number of original sam-

ples, and P is the number of transmitted samples and
the Percentage Root-Mean Square Di�erence (PRD),
which is a normalized value that indicates the error be-
tween the original and the reconstructed signals. The

PRD is calculated as PRD =

sP
N

i=1
(x[i]�x̂[i])2P
N

i=1
x2[i]

where

x[i] is the original ith sample, x̂[i] is the reconstructed
ith sample. Although the PRD is a good statistical
measure of goodness, it does not re
ect the visual ac-
ceptability of the new signal. A better error measure
used here is the signal-to-noise ratio, SNR, calculated

as SNR =

P
N

i=1
(x[i]�x[i])2[i]P

N

i=1
(x[i]�x̂[i])2

which relates the signal

power to the noise power. The �nal factor is the er-
ror in detecting the QRS segment. Applying the QRS
detector suggested in [7] where the length of the QRS
segment is calculated by locating the onset and end
points of the segment. The procedure employs a �ve-
step procedure which acts as a high-pass �lter to �lter
out the high frequency QRS complexes without declar-
ing the sharp T waves or the abrupt changes in the
baseline as QRS complexes.
Table (1) shows the results of applying the proposed
algorithm to the six cases of the ECG signals. The
cases indicated in the table are the normal sinus rhythm
(NSR), the atrial 
utter (AFLUT), the atrial �brilla-
tion (AFIB), the ventricular tachycardia (VTACH), the
ventricular �brillation (VFIB), and the partial heart
block (PHB). In reconstructing the signal using the
FOS method, we have a used a set of 250 candidate
frequencies which range from 0.5 Hz to 100 Hz. Since
the FOS method was used in the missing{data mode of
operation, we have increased the number of points by
adding the points which are clearly lie on the base line.
The lowest CR values were attained with the AFIB,

Case CR PRD(%) SNR(%)

NSR 15.90 0.04 4.28
AFLUT 10.59 0.08 7.51
AFIB 9.93 0.07 6.42
VTACH 16.33 0.13 5.76
VFIB 12.12 0.03 3.87
PHB 20.00 0.08 5.66

Table 1: Results of the proposed algorithm

AFLUT, and VFIB, cases in that order. These sig-
nals contain large number of oscillations when com-
pared with other cases. Thus, they are represented by
a fairly larger number of points. The PHB case pro-
duced the largest CR (20) since the signal contains a
large isoelectric region which needed very few points to
represent. These results indicate the proportional rela-
tionship between the oscillating behavior of the signal
and the compression ratio. Due to the large o�set for
all signals, the resulting PRD values were very small
which do not really re
ect the goodness of the algo-
rithm. The SNR, on the other hand, displays more
realistic assessment of the resulting reproduction error.
Again, the SNR was smaller with signals of large base-
line segments (PHB, NSR, VBIB). The largest QRS er-
ror was detected with the PHB signal (about 15 msec).
This was mainly due to the incorrect choice of the be-
ginning of one of the QRS complexes. With the other
cases, the average error was about 5 msec (one sam-
pling instant). A slight modi�cation of the point selec-
tion algorithm can remedy this problem. Comparing
the algorithm with previously published ones, we �nd
that the average CR obtained with the proposed al-
gorithm is about 14 which far exceed those obtained
using the Fast Fourier Transform [8](5.0) and the First
Order Interpolation [9](3.7). It should be noted, how-
ever, that this compression ratio represents an upper
bound as we have used the smallest number of neces-
sary points needed to represent the signal. We have
also found that the QRS detection error is much larger
with the other two algorithms. It is also evident from
the results shown in Fig. (5) that the proposed method
has preserved the diagnostically signi�cant features of
the ECG waveforms.

5. CONCLUSION

In this work an ECG data compression method is pro-
posed. The encoder part of the algorithm converts the
waveform to a set of linear segment each of them is
identi�ed by its starting point, length, and slope. The
starting point of all segments represent the encoded sig-



nal. The decoder part applies the FOS search method
to reconstruct the signal from the partial data gener-
ated by the encoder. Results show that the method
produces high compression ratios when compared to
other methods while maintaining small reconstruction
error. Diagnostic features of the waveform are also pre-
served. The algorithm can be improved by enhancing
the encoder to better select the optimal points and also
by increasing the pool of the candidate frequencies at
the decoder part.
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Figure 2: Compression of ECG waveforms


