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ABSTRACT

The problem of closed loop system identi�cation given
noisy time-domain input-output measurements is consid-
ered. It is assumed that the various disturbances a�ect-
ing the system are zero-mean stationary whereas the closed
loop system operates under an external cyclostationary in-
put which is not measured. Noisy measurements of the
(direct) input and output of the plant are assumed to be
available. The closed loop system must be stable but it is
allowed to be unstable in open loop. Recently we proposed
two identi�cation algorithms using cyclic-spectral analysis
of noisy input-output data. In this paper we provide an
asymptotic performance analysis of the recently proposed
parameter estimators. Computer simulation examples are
presented in support of the analysis.

1. INTRODUCTION

Consider the `true' linear system denoted by S

S : y(t) = H(q�1)u(t) + e(t) =

1X
i=1

h(i)u(t� i) + e(t); (1)

where t is discrete time, q�1 is the unit delay operator (i.e.
q�1u(t) = u(t � 1)), y(t) is the noisy output, u(t) is the
measured input, and e(t) is the stochastic disturbance. The
input u(t) is determined through linear feedback as

u(t) = v(t)� F (q�1)y(t) = v(t)�
1X
i=0

f(i)y(t� i) (2)

where F (q�1) is the controller transfer function and v(t) is
an external input signal (see Fig. 1).
Given an input-output record

fy(t); u(t); t = 1; 2; :::; Tg; but the underlying true system
H(q�1) unknown, it of much interest in control, communi-
cations and signal processing applications to �t a rational
transfer function model parametrized by �

G(q�1; �) =
B(q�1; �)

A(q�1; �)
=

Pnb
i=1 biq

�i

1 +
Pna

i=1
aiq�i

; (3)

� = [a1; a2; � � � ; ana ; b1; b2; � � � ; bnb ]T ; (4)

to given input-output record. A wide variety of approaches
exist [2], [3], [5].
In the presence of the feedback and noise e(t); the in-

put fu(t)g is correlated with the output fy(t)g so that the
standard spectral analysis and related approaches yield bi-
ased estimators of the system transfer function and related
parameters. For further details, see [2], [3] and [5]. In
[2] a nonparametric approach using cyclostationary and/or
non-Gaussian inputs was presented to solve this problem.
Ref. [2] requires the open loop transfer function to be sta-
ble and the approach presented therein is nonparametric.
In [6] and [7] we focused on second-order cyclostationarity
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and parametric approaches and unlike [2], allowed the open

loop transfer functionH(e�j!) to be unstable. In [6] and [7]
two identi�cation algorithms using cyclic-spectral analysis
of noisy input-output data were investigated. In this pa-
per we provide an asymptotic performance analysis of the
parameter estimators of [6] and [7].
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Figure 1. Closed-loop system description

2. PRELIMINARIES

Let fu(t)g be a zero-mean second-order almost cyclo-
stationary process, i.e. its second-order cumulant func-
tion cuu(t; �) := cumfu(t + �); u(t)g = Efu(t + �)u(t)g
is an almost periodic function in t [1]. Assume that
cuu(t; �) admits a Fourier series representation w.r.t. t:
Then cuu(t; �) :=

P
�2Auu

Cuu(�; �)e
j�t and Cuu(�; �)

:= limT!1
1
T

PT�1

t=0 cuu(t; �)e
�j�t where Auu := f� :

Cuu(�; �) 6� 0; 0 � � < 2�g: The Fourier coe�cient
Cuu(�; �) is called the second-order cyclic cumulant at cy-
cle frequency �: The set Auu is the countable set of cycle
frequencies of the second-order cyclic cumulant of fu(t)g:
The cyclic cumulant spectrum of fu(t)g is de�ned as

Suu(�;!) :=
1X

�=�1

Cuu(�; �)e
�j!� (5)

Consider the second-
order cross-cumulant function cyu(t; �) := cumfy(t +
�); u(t)g = Efy(t + �)u(t)g. Then, mimicking the de�-
nition of Cuu(�;�), the cyclic cross-cumulant is de�ned as

Cyu(�; �) := limT!1
1
T

PT�1

t=0
cyu(t; �)e

�j�t and the cyclic
cross-spectrum Syu(�;!) is de�ned as

Syu(�;!) :=
1X

�=�1

Cyu(�; �)e
�j!�

: (6)

3. MODEL ASSUMPTIONS

As in [6] and [7], assume the following:

AM1. limq!1 H(q�1) = 0.

AM2. [1 +H(q�1)F (q�1)]�1 is asymptotically stable.
AM3. Disturbance fe(t)g is zero-mean stationary. Exter-

nal input fv(t)g is zero-mean almost cyclostation-
ary sequence with cycle frequency set Avv.



AM4. For some � 2 Avv; jSuu(�;!)j > 0 for almost all
! 2 [0; �] if the proposed approaches utilize the
entire frequency range [0; �]. If only �nite number
of frequencies (� na+nb

2 ) are used then jSuu(�;!)j
need be non-zero only for this frequency set.

AM5. Let xi(t) 2 fy(t); u(t); v(t); e(t)g for i = 1; 2; � � � k.
Let � (k�1) := [�1; : : : ; �k�1]T : Let cx(t; � (k�1))

:= cumfx1(t); x2(t + �1); : : : ; xk(t + �k�1)g de-
note the the kth-order joint cumulant function
of random variables xi(t). Let Cx(�; � (k�1)) :=

limT!1
1
T

PT�1

t=0 cx(t; � (k�1))e
�j�t: The following

summability conditions hold true for each j =
1; : : : ; k� 1 and each k = 2; 3; : : ::

1X
�1;:::;�k�1=�1

sup
t

[1 + j�jj]jcx(t; � (k�1))j <1

1X
�1 ;:::;�k�1=�1

sup
�

[1 + j�jj]jCx(�;� (k�1))j <1

4. TRANSFER FUNCTION ESTIMATOR AND
ITS STATISTICS

It has been shown in [6] and [7] that under AM2-AM4,
we have

H(e�j!) = Syu(�;!)S�1uu (�;!): (7)

The approaches [6] and [7] consist of two steps. First obtain

a consistent estimator bHT (e
�j! ;�) of H(e�j!) via consis-

tent estimators bS(T )yu (�;!) and bS(T )uu (�;!) of Syu(�;!) and
Suu(�;!); respectively, based upon the input-output record
fu(t); y(t); t = 1; 2; : : : ; Tg: Next estimate the system pa-
rameters using the estimated transfer function at various
frequencies as `data;' this part follows [9]. We will consider
estimates based on only a single cyclic frequency � 2 Avv:

Let Y (T )(e!k) denote the DFT of fy(t)gTt=1: Y (T )(e!k) =PT�1

t=0
y(t+ 1)e�je!kt where e!k = 2�k

T
; k = 0; 1; : : : ; T � 1:

Similarly de�ned U (T )(e!k): Given the above DFT's, fol-
lowing [1] we de�ne the cross- and auto- cyclic spectrum
estimators as

bS(T )yu (�; e!k) = mTX
s=�mT

Y (T )(e!k�s)U (T )(�� e!k�s)
T (2mT + 1)

(8)

bS(T )uu (�; e!k) = mTX
s=�mT

U (T )(e!k�s)U (T )(�� e!k�s)
T (2mT + 1)

: (9)

For an arbitrary � 2 [0; 2�]; we de�ne bS(T )yu (�;�) :=bS(T )yu (�; e!k) where k is an integer such that
���� 2�k

T

�� is
the least. Similarly de�ne bS(T )uu (�;�): In light of (8) and (9)
de�ne a coarser frequency grid :

!l =
2�l

LT

+
2�(mT + 1)

T
; (10)

with l = 0; 1; : : : ; LT � 1 and LT = b T
2mT +1

c:
Lemma 1. [4] Let a sequence of scalar parameters mT

be such that as T ! 1; we have mT ! 0 and mTT !1:
Let k(T ) with T = 1; 2; : : : be a sequence of integers such

that limT!1
2�k(T )

T
= �; a �xed frequency. Then un-

der AM1-AM5, limT!1 Ef bS(T )yu (�;�)g = Syu(�;�) and

var
�bS(T )yu (�;�)

�
= O(��1T ) where convergence is uniform

in �, var(x) := Efjxj2g� jEfxgj2 and �T = 2mT +1: Con-
sider a �xed set of L distinct frequencies f�ngLn=1 such that

0 < �1 < �2 < � � � < �L < �: Then f bS(T )yu (�;�n)gLn=1 and

f bS(T )uu (�;�n)gLn=1 are asymptotically jointly Gaussian ran-
dom variables. Let �1; �2 2 Avv be cycle frequencies that
satisfy AM5. Then

lim
T!1

�T covfbS(T )x1u(�1;�m); bS(T )x2u(�2;�n)g =

Sx1x2(�m 	 �n;�m)Suu(�1 	 �m � �n 	 �2;�1 � �m)

+ Sx1u(�m � �n	�2;�m)Sx2u(�1	 �m 	 �n;��n); (11)
lim
T!1

�T covfbS(T )x1u(�1;�m);
bS(T )�x2u (�2;�n)g =

Sx1x2(�m � �n;�m)Suu(�1 	 �m 	 �n � �2;�1 � �m)

+ Sx1u(�m 	 �n � �2;�m)Sx2u(�1 	 �m � �n;�n); (12)

where � and 	 denote plus and minus modulo 2� (circular)
operations, respectively. 2
Clearly, Lemma 1 holds true when we replace y with u inbS(T )yu (�;�). Using the estimated cyclic spectra we have an

estimator of the system transfer function at frequency �

bHT (e
�j�;�) := bS(T )yu (�;�)[ bS(T )uu (�;�)]�1 (13)

provide that ( bS(T )uu (�;�))�1 exists. It has been shown in [6]
and [7] that (i.p.= in probability)

lim
T!1

bHT (e
�j�;�) = H(e�j�) i:p: (14)

Convergence in (14) is uniform in � 2 [0;2�]:
Remark 1. In the rest of this paper we use !l to denote

a frequency on the coarse grid (10) and use �n to denote a
�xed frequency independent of the record length T:
Theorem 1. Suppose that AM1-AM5 hold true.

Let �0 2 Avv be a cycle frequency that satis�es AM5.

Consider
np

�T

� bHT (e
�j�n ;�0)�H(e�j�n )

�oL

n=1
where

f�ngLn=1 is a �xed set of L distinct frequencies such that
0 < �1 < �2 < � � � < �L < �:

(A). If 2�n 62 Avv, then
p
�T

� bHT (e
�j�n ;�0)�H(e�j�n)

�
converges in distribution to a zero-mean complex circularly
symmetric Gaussian random variable with variance given
by

lim
T!1

�T covf bHT (e
�j�n ;�0); bHT (e

�j�n ;�0)g = �
2(�n;�0);

lim
T!1

�T covf bHT (e
�j�n ;�0); bH�T (e�j�n ;�0)g = 0;

where covfxi; xjg = Efxix�jg �EfxigEfx�jg and

�
2(�n;�0) =

S(s)uu (�0 � �n)

jSuu(�0;�n)j2
�
jH(e�j�n)j2S(s)uu (�n)

+S(s)yy (�n)� 2RefH�(e�j�n )S(s)yu (�n)g
�
: (15)

(B). For all � 2 Avv, de�ne ~�(T ) := �T
2�(2mT+1)

: Let

mT be chosen so that 1
2mT+1

62 f~�(T ) � b~�(T )c; ~�(T ) +
~�0(T )�b~�(T )+ ~�0(T )c; j~�(T )� ~�0(T )j�bj~�(T )� ~�0(T )jcg
for all � 2 Avv, and either j~�(T ) � ~�0(T )j � bj~�(T ) �
~�0(T )jc or ~�(T ) + ~�0(T )� b~�(T ) + ~�0(T )c 62 f0; T

2mT +1
�

b T
2mT+1

cg for all � 2 Avv � f�0g: If the set f�ngLn=1



is chosen from the coarse frequency grid (10), thennp
�T

�bHT (e�j�n ;�0)�H(e�j�n)
�oL

n=1
converge in dis-

tribution to a zero-mean complex circularly symmetric
Gaussian random vector with covariance structure given by

lim
T!1

�T covf bHT (e
�j�m ;�0); bHT (e

�j�n ;�0)g

= �
2(�n;�0)�mn;

lim
T!1

�T covf bHT (e
�j�m ;�0); bH�T (e�j�n ;�0)g = 0:

Proof: A proof of part (A) appears in [7]. The proof of
part (B) is more involved and may be found in [8]. (In (15)

S(s)yu (�) = Syu(0; �)). 2
Remark 2. If the choice of mT does not satisfy the

requirements of Theorem 1(B), then bHT (e
�j�m ;�0) will

be correlated for certain pairs of frequencies. Extensive
simulations suggest that the variance expressions given in
Sec. 6 later can be used in this case also (because such
lack of independence occurs over a very small subset of all
frequency pairs) [8].

5. TWO PARAMETER ESTIMATORS

We will assume that the true model generating the data is
in the model set (i.e. H(e�j!) is of the type G(e�j! ; �)).
Let na0, nb0 and �0 denote the true values of na, nb and �,
respectively, such that G(e�j!; �0) = H(e�j!) for some �0.
The �tted model parameters are governed by na, nb and
�, whereas the data are generated by the true model with
parameters governed by na0, nb0 and �0.

5.1. An Equation Error Formulation

De�ne b�(1)TL = arg

�
min
�2�C

J1T (�)

�
(16)

where �C is a (large) compact set such that �0 2 �C ,

J1T (�) =
1

L

LX
l=1

���A(e�j�l ; �) bHT (e
�j�l ;�)� B(e�j�l ; �)

���2 ;
0 < �1 < �2 < � � � < �L < �, B(e�j�l ; �) =Pnb

i=1
bi(�)e

�j�li and A(e�j�l ; �) = 1 +
Pna

i=1
ai(�)e

�j�li.
It has been shown in [6] that under AM1-AM5, na � na0,
nb � nb0 and min(na � na0; nb � nb0) = 0 such that

na + nb � 2L, it follows that limT!1
b�(1)TL

i:p:
= �0.

5.2. A Weighted Least-Squares Formulation

De�ne

b�(2)TL = arg

�
min
�2�C

J2T (�)

�
(17)

where �C is a (large) compact set such that �0 2 �C ,

J2T (�) :=

LX
l=1

��� bHT (e
�j�l ;�)�G(e�j�l ; �)

���2
b�2T (�l;�) ;

b�2T (�l;�) denotes (15) with all \unknowns" replaced with
their consistent estimators (cf. (8) and (9)). It follows from
the discussion of Sec. 4 that under AM1-AM5, we have
limT!1b�2T (�l;�) = �2(�l;�) i.p. uniformly in �l 2 [0; �].
It has been shown in [7] that under AM1-AM5, na �
na0, nb � nb0 and min(na � na0; nb � nb0) = 0, such that

na + nb � 2L, it follows that limT!1
b�(2)TL

i:p:
= �0.

6. PERFORMANCE ANALYSIS

We will invoke corresponding results from [9], which apply
by virtue of Theorem 1 (assuming mT is chosen to sat-
isfy part (B) of Theorem 1), after some straightforward
notational changes. Note that [9] which deals with spec-
tral analysis based approaches for open loop systems. But
once we reduce the time-domain data to consistent transfer
function estimates obeying Theorem 1, the analysis and the
results of [9] apply since [9] also works with transfer func-
tion estimates that are asymptotically complex (circularly
symmetric) Gaussian and are asymptotically independent
at distinct frequencies. A di�erence between [9] and this

paper is that the variance expressions for bHT (e
�j�l ;�) are

di�erent in the two papers.

6.1. Equation Error Formulation

It follows from ([9], Sec. IV.C) that under the hypotheses

of Theorem 1, b�(1)TL is asymptotically Gaussian with mean
�0 and

lim
T!1

�T cov
�
(b�(1)TL � �0); (b�(1)TL � �0)

�
=

1

L
D�1e��LD�1

(18)
where �2(�l) is given by (15), the symbol H denotes the
conjugate transpose operation,

e��L :=
1

L

LX
l=1

�
2(�l;�)

�
FlFHl + F�l FT

l

�
;

Fl := A(e�j�l ; �0)Cl +
�
A(e�j�l ; �0)G(e

�j�l ; �0)

�B(e�j�l ; �0)
�C�lg ;

C l :=
�
e
j�lG

�(e�j�l ; �0)
...ej2�lG�(e�j�l ; �0)

... � � �
...

e
jna�lG

�(e�j�l ; �0)
...� e

j�l
... � � �

...� e
jnb�l

�T
;

Clg :=

�
e
j�l

...ej2�l
... � � �

...ejna�l
...0
... � � �

...0

�T
;

D =
1

L

LX
l=1

�
ClCHl + C�l CTl

�
= independent of �0:

6.2. Weighted Least-Squares

It follows from ([9], Sec. V.C) that under the hypotheses of

Theorem 1, b�(2)TL is asymptotically Gaussian with mean �0
and

lim
T!1

�T cov
�
(b�(2)TL � �0); (b�(2)TL � �0)

�
=

1

L

h
�(2)
�L

i�1
(19)

where �2(�l) is given by (15)),

�(2)
�L =

1

L

LX
l=1

�
Dl(�0)DHl (�0) + D�l (�0)DT

l (�0)
	

jA(e�j�l ; �0)j2�2(�l;�) ;

Dl(�) :=

�
ej�lG�(e�j�l ; �)

...ej2�lG�(e�j�l ; �)
... � � �

...

e
jna�lG

�(e�j�l ; �)
...� e

j�l
... � � �

...� e
jnb�l

�T
:



7. SIMULATION EXAMPLE

This example is based upon [10]. The open loop plant is
given by

H(q�1) =
q�1 + 0:5q�2

1� 1:85q�1 + 0:525q�2
; poles : 1:5; 0:35:

The controller F (q�1) is given by F (q�1) = [0:35 �
0:28q�1][1 � 0:8q�1]�1: The closed loop system is stable.
We take

e(t) =

1� 1:7959q�1 + 1:4328q�2 � 0:59608q�3 + 0:08738q�4

1 � 1:7q�1 + 0:33q�2 + 1:063q�3 � 0:6408q�4
�(t)

and the cyclostationary external input signal is chosen as
v(t) = cos( 3�t8 )�(t) where �(t) and �(t) are zero-mean
i.i.d. Gaussian random sequences with unit variance, and
they are independent of each other. This leads to Avv =
f0; 0:75�; 1:25�g:We selected the cycle frequency � = 0:75�
for system identi�cation via cyclic spectral analysis. The
power of f�(t)g was scaled to achieve a closed loop output
SNR of 10 dB. Let s(t) = contribution of v(t) alone to y(t)
and and let �(t) = contribution of e(t) alone to y(t). Then
output SNR is de�ned as the ratio

SNR =
limT!1

1
T

PT

t=1
E[s2(t)]

limT!1
1
T

PT

t=1
E[�2(t)]

:

The required cyclic spectra (auto and cross) were es-
timated via frequency-domain averaging of cyclic peri-
odogram/ cross-periodogram using non-overlapping rectan-
gular windows (see (8) and (9)). Tables 1 and 2 show the
results of averages over 100 Monte Carlo runs based upon
a record length T = 2048 with 2m2048 + 1 = 21 in (8),(9).
Tables 3 and 4 show the same for a record length T = 8192
with 2m8192 + 1 = 91. We have used two di�erent ap-
proaches to compute the asymptotic variances. In the �rst
approach we use the complete knowledge of the true system
where smoothed true auto- and cross-cyclic spectra and a
smoothed true transfer function as well as �0 are used to
compute (18) and (19). We denote the asymptotic variance
computed in this way by �2t1: In the second approach we
replace the true system quantities in (18) and (19) by the
averages over 100 Monte Carlo runs of estimated smoothed
cyclic spectra and estimated parameters. This approach
allows us to estimate the asymptotic variances using only
the observed input and output data over multiple records.
We denote the resulting asymptotic variance by �2t2: Note
that �2t1 uses \asymptotic" expressions whereas �2t2 is based
on �nite record estimates, and therefore incorporates �nite
record length e�ects; it turns out to be more accurate for
this example.

TABLE 1 : based on 100 Monte Carlo runs
Equation Error Formulation

T = 2048
True Mean �e �t1 �t2

a1 �1.850 �1.855 0.054 0.030 0.057
a2 0.525 0.560 0.054 0.031 0.060
b1 1.000 0.981 0.066 0.035 0.068
b2 0.500 0.453 0.062 0.038 0.073

�e= experimental standard deviation (SD). �t1= asymp-
totic SD based on (18) or (19) using knowledge of true sys-
tem in computed the required entities. �t2= asymptotic SD
based on Monte Carlo evaluation of entities needed in (18)
or (19).

TABLE 2 : based on 100 Monte Carlo runs
Weighted Least-Squares

T = 2048
True Mean �e �t1 �t2

a1 �1.850 �1.845 0.023 0.012 0.031
a2 0.525 0.519 0.027 0.012 0.032
b1 1.000 0.991 0.031 0.014 0.035
b2 0.500 0.508 0.033 0.016 0.038

TABLE 3 : based on 100 Monte Carlo runs
Equation Error Formulation

T = 8192
True Mean �e �t1 �t2

a1 �1.850 �1.849 0.026 0.016 0.036
a2 0.525 0.529 0.027 0.016 0.037
b1 1.000 0.994 0.027 0.018 0.038
b2 0.500 0.496 0.031 0.020 0.041

TABLE 4 : based on 100 Monte Carlo runs
Weighted Least-Squares

T = 8192
True Mean �e �t1 �t2

a1 �1.850 �1.845 0.014 0.006 0.015
a2 0.525 0.520 0.016 0.006 0.016
b1 1.000 0.994 0.016 0.007 0.017
b2 0.500 0.506 0.018 0.008 0.018
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