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ABSTRACT

Channel estimation and blind equalization of MIMO (mul-
tiple-input multiple-output) communications channels is
considered using primarily the second-order statistics of
the data. We consider estimation of (partial) channel im-
pulse response and design of finite-length MMSE (minimum
mean-square error) blind equalizers. The basis of the ap-
proach is the design of a zero-forcing equalizer that whitens
the noise-free data. We allow infinite impulse response
(IIR) channels. Moreover, the multichannel transfer func-
tion need not be column-reduced. Our approaches also work
when the “subchannel” transfer functions have common ze-
ros so long as the common zeros are minimum-phase zeros.
The channel length or model orders need not be known.
The sources are recovered up to a unitary mixing matrix
and are further ‘unmixed’ using higher-order statistics of
the data. An illustrative simulation example is provided.

1. INTRODUCTION

Consider a discrete-time MIMO system with N outputs and
M inputs:

y(k) = F(2)w(k) + n(k) = s(k) +n(k)  (1-1)

where y(k) = [y (k) :y2(k):-- - :yn(k)]T, similarly for s(k),
w(k) and n(k), and z is the Z—transform variable as well
as the backward-shift operator (i.e., z7'w(k) = w(k — 1),
etc.), s(k) is the noise-free output, n(k) is the additive mea-
surement noise and the N x M matrix F(z) is given by

Fz) = > Fiz™h = A7 (2)B(2), (1-2)

g ny
Az)=T+) Aiz™" and B(z) = ) Biz™". (1-3)
i=1 =0

We allow all of the above variables to be complex-valued.

Such models arise in several useful baseband-equivalent
digital communications and other applications [1]-[6],[8],
[10]-[12],[14]. In these applications one of the objectives
1s to recover the inputs w(k) given the noisy measurements
but not given the knowledge of the system transfer func-
tion. A large number of papers (see [4],[5],[10],[11],[14])
have concentrated on a two-step procedure: first estimate
the channel impulse response (IR) and then design an equal-
izer using the estimated channel. A fundamental restriction
in these works is that the channel is FIR with no common
zeros among the various subchannels. A few (see [1]and
[12], e.g.) have proposed direct design of the equalizer by-
passing channel estimation. Still they assume FIR (SIMO)
channels with no common zeros.

In this paper we allow IIR channels. The MIMO channel
does not have to be column-reduced. We will also allow
common zeros so long as they are minimum-phase. Fi-
nally, in the presence of nonminimum-phase common zeros,
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our proposed approach equalizes the spectrally-equivalent
minimum-phase counterpart of F(z); it does not “fall
apart” unlike quite a few existing approaches. Owur pro-
posed approach extends the SIMO results of [1] and [8] to
MIMO channels.

2. PRELIMINARIES
2.1. FIR Inverses
Assume the following:

(H1) N > M.
(H2) Rank{B(z)} = M Vz including z = co but exclud-
ing z = 0, L.e., B(z) is irreducible [7, Sec. 6.3].
(H3) det(A(z)) # 0 for |z| > 1.
It has been shown in [6] (using some results from [2]) that
under (H1)-(H3) there exists a finite degree left-inverse
(not necessarily unique) of F(z):

G(x)F(z) = Inr
where G(z) is M x N given by

(2-1)

L.
G(z) = ZGLz_l for any Le > na+ (2M — 1)n, — 1.
=0

(2-2)
2.2. Linear Innovations Representation
Assume further the following:

(H4) Input sequence {w(k)} is zero-mean, spatially in-
dependent and temporally i.i.d. with each of its
components having non-zero fourth cumulants.
Take E{w(k)w™(k)} = Inr where Insis the M x M
identity matrix and the superscript H is the Her-
mitian operation.

Under (H1)-(H4), {s(k)} may be represented

as

K
s(k) = =Y Dis(k —1) + I,(k)
=1
where K < ng+ Mnp, D;’s are some N x N matrices and

{I,(k)} is a zero-mean white N x 1 random sequence (linear
innovations for {s(k)}) with

I(k) = Fow(k). o

Proof: See [16]. O
It follows from (1-1) and Lemma 1 that

D(2)s(k) = D(2)F(z)w(k) = Fow(k)

(2-3)

(2-4)

(2-5)

where D(z) = In + Efil D;z~%. Since w(k) is full-rank
and white, it follows from (2-5) that

D(2)F(z)=Fo = (Fi'Fo)” FI'D(2)F(z) = In.
(2-6)



Clearly the M x N polynomial matrix G(z) :=
(F?Fo)_l Fg,“D(z) is of degree K < m, + Mnp and it
is a left inverse to F(z). This result is summarized below.
Under (H1)-(H4), there exists an inte-
ger K < ngs 4+ Mny and a polynomial matrix G(z) =
Eio Gzt of degree K such that G(z)F(z) = Im. °

Let Ryoz. denote a [N(Le+1)] x [N(Le+1)]

matrix with its 4j-th block element as R,,(j —1) = E{s(k+

j—1)8™(k)}. Then under (H1)-(H4), p(Rss1,) < NL.+M
for Lo > no + Mnp where p(A) denotes the rank of A. o
Sketch of proof: 1t follows from Lemma 1 and (2-3) that

[ IN D]_ 0 ]RssLe

= [ FoF} 0 - 0]. (2-1)
Apply Sylvester’s inequality [7, p. 655] to (2-7) to deduce
the desired result. O
3. EQUALIZATION: NO COMMON ZEROS

Assume that (H1)-(H4) hold true. In addition assume the
following regarding the measurement noise:

(H5) {n(k)} is zero-mean Gaussian with E{n(k +
™ (k)} = 02 In6(7).

3.1. Zero-Delay Zero-Forcing Blind Equalizer
Using (1-2), (2-1) and (2-2), we have

- I -0
ZGm—lFl:{OM7 z:lZ---
=0

leading to

D'"'a,‘l'M""b 0

(3-1)

GO G]_ GLe _:
[ J§=1[1 0 42

where S is the (N(Le 4+ 1)) x co matrix given by

Fo F, F, F;
_ 0 F, F, F,
S=1 . . . . (3-3)

0 0 -~ 0 Fo F

Let 7 denote the pseudoinverse of S. By [15, Prop. 1],

s = EH(EEH)#. Then the minimum norm solution to
the FIR equalizer is given by [15, Sec. 6.11]
[ Go Gy Gr. ]=[Fl o 0 ] (S3"*.
(3-4)
In a fashion similar to R,,z, in Lemma 2, let Ryyz,
denote a [N(Le + 1)] x [N(Le + 1)] matrix with its ij-th
block element as Ryy(5 —1) = E{y(k+j —i)y™(k)}; define
similarly Rz, pertaining to the additive noise. Carry out
an eigendecomposition of Ryyr,. Then the smallest N — M
eigenvalues of Ryyr, equal o2 because under (H1)-(H4),
p(Rsst.) < NL. + M whereas p(Rpnr,) = NL. + N =
p(Ryyr.). Thus a consistent estimate o2 of o2 is obtained
by taking it as the average of the smallest N — M eigenvalues

of ﬁyyl,e, the data-based consistent estimate of Ryyz,.-

Under (H4) and (H5),

(EEH) = R”Le = Rnye _RnnLe = Rnye - UZ.I

(3-5)

Thus, (EEH) can be estimated from noisy data. However,
we don’t know Fg. To this end, we seek an N x N FIR
filter Go(z) := Ef:o G iz " satisfying

[ GaO Gal

Gar, ]=[In O 0 JR¥,..

(3-6)

Comparing (3-4) and (3-6) it follows that

[ Go G Gr. |=F)'[ Gao Ga Gar, ]

(3-17)

leading to

D Gz = G(2) = Fi'ba(2). (3—8)

In practice, therefore, we apply Ga(z) to the data leading
to

v(k) := Ga(2)y(k) = vs(k) + Go(z)n(k) (3-9)

such that
Filve(k) = w(k) (3 —10)
where
vs(k) := Ga(z)[y(k) — n(k)] = Ga(2)s(k). (3 -11)

In (3-10) {w(k)} is a white M —vector sequence (by
assumption (H4)), however, {v,(k)} is not necessarily a
white vector sequence. Given the second-order statistics
of {v,(k)}, how does one estimate Fy so that {w(k)} sat-
isfying (H4) is recovered? We need to have Ryw(7) :=
B{w(k 4+ 7)w"(k)} = 0 for |7| # 0 and p(Ryuw(0)) = M.
By (3-10), Ruuw(r) = F¥R,,.,(7)Fo where R, (7) :=
E{v,(k + 7)v¥(E)}. Define (L > 0 is some large integer)

Rup, = R0, (-1) RY,.,(<2) -+ Ry, (-1):Q"T"

(3—-12)

where Q = [qr+15 . EqN], r = p(Ry,v,(0)) with M <r <
N, gi’s (r +1 < i < N) are orthonormal eigenvectors of

v,v, (0) corresponding to zero eigenvalues, and the symbol
* denotes the complex conjugation operation. Note that if
r = N, Q is omitted from (3-12). Let Fo, and Fon be
the orthogonal projections of Fy onto the r—dimensional
‘signal subspace’ (range space) and (N — r)—dimensional
‘noise subspace’ (null space), respectively, of R.,,.,(0).
By (3-10), p(Fos) = M. Then Fo = Fo, + Fon with
F¥For = 0 and Rs,.,(0)Fon = 0. Tt then follows that
E{F) v (R (E)Fon} = FIR,.,.,(0)Fon = 0; hence,
Fi v.(k) = 0 with probability one (w.p.1) and (cf. (3-10))

Flivs(k) = w(k). (3—13)

Fyﬂ,s is rank deficient for any L > 1 such
that Ry,.,Fos =0 and p(Fos) =M. e

Proof: By construction Q™*Fo, = 0 as columns of Q span
the noise-subspace of R,,,,(0) and Fo, is the orthogonal
projection of Fy onto the r—dimensional signal subspace of
R.,.,(0). Furthermore, we have

Ruw,(7) = E{w(k + r)v{(E)} =0 Vr>1 (3—14)

because v,(k) is obtained by causal filtering of y(k), hence
of w(k). Using (3-13) in (3-14) it then follows that there
exists a N x M Fo, # 0 such that

FliRo,.,(T)=0Vr>1 = Ry, (—7)Fo, =07 > 1.
(3= 15)



The desired result is then immediate. O
Pick a N x M column-vector Hp to equal the rightmost
M right singular vectors in a singular-value decomposition

(SVD) R,,,, = UXV™, i.e. the right singular vectors cor-
responding to the M smallest singular values. Therefore,
p(Ho) = M. Then since ideally the M smallest singular

values of R,,,, are zero, we have Hg-LRysys(—T)Ho = 0 for
7=1,2,---,L. This, in turn, implies that

(HI'R.,.,(—7)Ho) " = 0 for 7=1,2,---,L. (3 16)

Moreover Q"'Ho = 0. An eigendecomposition yields

=7 H
R....(0)= ) ciqial = Q%Q (3-17)
i=1

where Q = [qlg . Eqr], q;’s (1 < 7 < r) are orthonormal
eigenvectors of R,,,,(0) corresponding to non-zero eigen-

values ¢;’s and ¥ = diag{oi,---,0r}. Thus columns of Q
span the signal subspace of R,,v,(0) and the columns of

Q span the noise subspace of R.,,,(0). Since Q7'Hy = 0,
we have Hy = QC where C is » x M and p(C) = M.
Then HJ'R.,.,(0)H, = C"C where C = £!/2C and
p(é) = M. Finally, by result R11 on p. 261 of [9],
p(aﬁé) = p(aéﬁ), and therefore, by Sylvester’s inequal-
ity [7, p. 655], p(H)'Roy,.,(0)Ho) = M.

The overall system with w(k) as input and Hy'v,(k) as
output has the transfer function

Hg,{ga(z)A_l(z)B(z)
— [det(A())Tad) " B Ga(2)adi(A(2)B(z) (3 18)

and therefore, is an autoregressive moving average (ARMA)
model with autoregressive (AR) order no more than Nn,
and moving average (MA) order no more than ny + Le +

(N —1)n,, denoted by ARMA(Nng,np+ Le + (N — 1)n,).
Therefore, it follows from (3-16) that Hi*v,(k) is zero-mean
white if L > ny+L.+(N —1)n,. Moreover, since v,(k)is ob-
tained by causal filtering of w(k), it follows that Hi v, (k) =
Yo Piw(k—i) where M x M P(z) = 3 Piz™"is stable
satisfying P(ej“')PH(ej“') = In Vw (allpass). Therefore, we
have E{Hvas(k —I—T)WH(k)} = P, for 7 > 0, and using (3-
13), we have E{H¥v,(k + 7)w"(k)} = HYR.,.,(7)Fos =
0 (by construction of Ho) for 7 > 1. Thus P, =0 for v > 1.
Therefore, we have

H)'v,(k) = Pow(k) such that p(Po) = M.
By (3-11) and (3-19), we have

(3—19)

H}'Ga(2)y(k) = Pow(k) + HY Ga(2)n(k) 3 p(Poz = M.)
3—-20
Since PoUUMPY = PoPY for any unitary matrix U, one
can not uniquely determine Po from (3-20) given second-
order statistics of data y(k), and knowledge (estimates) of

Ho, filter G4(z) and noise variance o2 [13]. One has to
exploit higher-order statistics (HOS) of data. The model
(3-20) is an instantaneous mixture model [13], therefore,
any existing method may be applied to estimate Py given
(3-20). In this paper we have used the joint diagonalization
procedure of [13]. The required estimate of Py is obtained
as

P, =W™'U (3-21)

where W “diagonalizes” Hg,‘LRyﬂ,s(O)Ho into an identity
matrix and U is a unitary matrix obtained via the joint
diagonalization procedure of [13] using fourth-order cumu-

lants of WH2Ga(2)y(k). Let I; (s = 1,2,---, M) denote
the orthonormal eigenvectors of Hg,‘LRyﬂ,s(O)Ho with the

corresponding eigenvalues «;’s. Set £ = [115 -+ :1p] and
, =diag(v1,-+-,vm). Then
W =, “t2cH (3 — 22)

diagonalizes Hg,‘LRyﬂ,s(O)Ho to an identity matrix:
W (H'R.,.,(0)Ho) W™ = I Finally, we have

H'v.(k) = w(k) where Ho=H,W"U. (3-23)
Remark 1. Using (3-11) and (3-23) it follows
that Hy' [7, Gais(k — )] = w(k). The filter Hy Ga(2)
whitens the noise-free received signal. Moreover, the deriva-
tion of this filter was based upon whitening of ﬁz,i Ga(2)s(k).
These considerations motivate the name a whitening ap-

proach for the proposed technique. Owur approach is far
more structured and different than that of [12]. O

3.2. MMSE Equalizer with Delay d

Using the orthogonality principle, the MMSE equalizer of
length Le + 1 to estimate w(k — d) (d > 0) based upon
y(n), n=kk—1,---,k — L, satisfies

ad,Le ] =

[ F¥ FY, - F o0 - 0 |R .. (3-—24)

Clearly one can obtain a consistent estimate of Ryyz, from
the given data. It remains to estimate F;’s to complete the

design. Here the discussion of Sec. 3.1 becomes relevant.
From (3-11) and (3-23) we have

[ Gap Gan

L.
Ho'vi(n) =) M Guais(n — i).

(3 — 25)
=0
Using (3-25) and taking expectations we have
L.
B{s(n)vi‘(n — m)}Ho = ) Ruy(r +4)GoiHo. (3 - 26)
=0
Using (1-1), (1-2) and (3-23) we have
E{s(n)v(n — 7)}Ho = F-. (3—27)
Hence, we have from (3-26) and (3-27)
L.
Fr'=H,' ) GuR(r +1). (3 — 28)

=0
Substitute the results of (3-28) for 7 = 0,1,---,d in (3-24)
to complete the design. The MMSE estimate w(t — d) of
w(t — d) is then given by W(t —d) = Ef:o ad,iy(t —1i).
4. COMMON MINIMUM-PHASE ZEROS
Here the MIMO transfer function is

Mhe

F(z) = AT(2)B(2)Be(2), Be(z) = 3 Beiz™

(4-1)
where B(z) satisfies (H2) and B.(z) is a finite-degree M x M
polynomial that collects all the common zeros/factors of the
subchannels. Assume that



(H6) Given model (4-1), det(B.(z)) # 0 for |z| > 1.

Then while A™"(2)B(2) has a finite left-inverse, B;'(z) is
IIR though causal under (H6). Then (3-2) holds true ap-
proximately for “large” L., the approximation getting bet-
ter with increasing L.. Similarly Lemmas 1 and 2 hold true
approximately for “large” K and Lemma 3 also holds true
approximately for L. > K. Note also that p(Fo) = M
where Fo = BoB.o since, by (H6), p(Bo) = M (evalu-
ate det(B.(z)) at z = o). It is then readily seen that the
developments of Sec. 3 apply to the current case also.
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Fig. 1. Normalized MSE and probability of symbol de-
tection error P. for the two users after MMSE equalization
with d = 3. Record length T = 500 symbols for equalizer de-
sign. Awverages over 100 Monte Carlo runs. The designed
equalizer was applied to record lengths of 3000 symbols for
performance evaluation.

5. SIMULATION EXAMPLE

We consider a wireless communications scenario with two
(M = 2) 4-QAM user signals arriving at a uniform lin-
ear array (half-wavelength spacing) of N = 4 sensors via a
frequency selective multipath channel. The signaling pulse
shape for both the users was a raised-cosine pulse with a
roll-off factor of 0.2, the pulse being truncated to a length of
4T, where Ts = symbol duration. The array measurements
are assumed to be sampled at baud rate with sampling in-
terval T; seconds and the two sources have the same baud
rate. The relative time delay 7 (relative to the first arrival),
the angle of arrival 8 (in degrees w.r.t. the array broadside)
and the relative attenuation factor (amplitude) «, (7,0, a),

for the two sources were selected as:
wy : (0T, 40°,1.0), (0.3T,20°,1.0), (0.6Ts, —20°,1.0)

wy ¢ (0T, 10°,1.0), (1.1Ts, —15°,1.0), (1.6T,, —1°,1.0).
(5-1)
Sampling of received signal at the array leads to a discrete-
time MIMO FIR model B(z) with N = 4, M = 2 and
ny = 4 such that By # 0 and By # 0 (see Sec. 1). The
effective MIMO channel was taken to be

F(z) = B(2)B:(z) where B.(z)=(1-— 0.5z_l)Ig.

5—2
The part B:(z) in (5-2) may represent some filtering at thg
transmitter or receiver, and it leads to a system with com-
mon zeros in the two subchannels.

An MMSE equalizer of length L, = 7 (8 taps per sub-
channel, totaling 32 taps) was designed with a delay d =3
for each of the two sources. Fig. 1 shows the results of sim-
ulations for a record length of 7' =500 symbols. It is seen
that the proposed approach works quite well. Also pres-
ence of a common (minimum-phase) zero has not caused
any problems.
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