BLIND CHANNEL ESTIMATION AND EQUALIZATION OF MULTIPLE-INPUT MULTIPLE-OUTPUT CHANNELS

Jitendra K. Tugnait Bin Huang

Department of Electrical Engineering Auburn University, Auburn, Alabama 36849, USA E-mail: tugnait@eng.auburn.edu huangbi@eng.auburn.edu

ABSTRACT

Channel estimation and blind equalization of MIMO (multiple-input multiple-output) communications channels is considered using primarily the second-order statistics of the data. We consider estimation of (partial) channel impulse response and design of finite-length MMSE (minimum mean-square error) blind equalizers. The basis of the approach is the design of a zero-forcing equalizer that whitens the noise-free data. We allow infinite impulse response (IIR) channels. Moreover, the multichannel transfer function need not be column-reduced. Our approaches also work when the "subchannel" transfer functions have common zeros so long as the common zeros are minimum-phase zeros. The channel length or model orders need not be known. The sources are recovered up to a unitary mixing matrix and are further 'unmixed' using higher-order statistics of the data. An illustrative simulation example is provided.

1. INTRODUCTION

Consider a discrete-time MIMO system with N outputs and M inputs:

$$\mathbf{y}(k) = \mathcal{F}(z)\mathbf{w}(k) + \mathbf{n}(k) = \mathbf{s}(k) + \mathbf{n}(k)$$
 (1-1)

where $\mathbf{y}(k) = [y_1(k) : y_2(k) : \cdots : y_N(k)]^T$, similarly for $\mathbf{s}(k)$, $\mathbf{w}(k)$ and $\mathbf{n}(k)$, and z is the \mathbb{Z} -transform variable as well as the backward-shift operator (i.e., $z^{-1}\mathbf{w}(k) = \mathbf{w}(k-1)$, etc.), $\mathbf{s}(k)$ is the noise-free output, $\mathbf{n}(k)$ is the additive measurement noise and the $N \times M$ matrix $\mathcal{F}(z)$ is given by

$$\mathcal{F}(z) \ := \ \sum_{l=0}^{\infty} \mathbf{F}_l z^{-l} \ = \ \mathcal{A}^{-1}(z) \mathcal{B}(z), \ (1-2)$$

$$\mathcal{A}(z) = I + \sum_{i=1}^{n_a} \mathbf{A}_i z^{-i}$$
 and $\mathcal{B}(z) = \sum_{i=0}^{n_b} \mathbf{B}_i z^{-i}$. (1-3)

We allow all of the above variables to be complex-valued.

Such models arise in several useful baseband-equivalent digital communications and other applications [1]-[6],[8], [10]-[12],[14]. In these applications one of the objectives is to recover the inputs $\mathbf{w}(k)$ given the noisy measurements but not given the knowledge of the system transfer function. A large number of papers (see [4],[5],[10],[11],[14]) have concentrated on a two-step procedure: first estimate the channel impulse response (IR) and then design an equalizer using the estimated channel. A fundamental restriction in these works is that the channel is FIR with no common zeros among the various subchannels. A few (see [1] and [12], e.g.) have proposed direct design of the equalizer by-passing channel estimation. Still they assume FIR (SIMO) channels with no common zeros.

In this paper we allow IIR channels. The MIMO channel does not have to be column-reduced. We will also allow common zeros so long as they are minimum-phase. Finally, in the presence of nonminimum-phase common zeros, our proposed approach equalizes the spectrally-equivalent minimum-phase counterpart of $\mathcal{F}(z)$; it does not "fall apart" unlike quite a few existing approaches. Our proposed approach extends the SIMO results of [1] and [8] to MIMO channels.

2. PRELIMINARIES

2.1. FIR Inverses

Assume the following:

- (H1) N > M.
- (H2) $\operatorname{Rank}\{\mathcal{B}(z)\} = M \forall z \text{ including } z = \infty \text{ but excluding } z = 0, \text{ i.e., } \mathcal{B}(z) \text{ is irreducible } [7, \text{ Sec. 6.3}].$
- (H3) $det(\mathcal{A}(z)) \neq 0$ for $|z| \geq 1$.

It has been shown in [6] (using some results from [2]) that under **(H1)-(H3)** there exists a finite degree left-inverse (not necessarily unique) of $\mathcal{F}(z)$:

$$\mathcal{G}(z)\mathcal{F}(z) = I_M \qquad (2-1)$$

where $\mathcal{G}(z)$ is $M \times N$ given by

$$\mathcal{G}(z) \;=\; \sum_{l=0}^{L_e} \mathbf{G}_l z^{-l} \;\; ext{for any} \;\; L_e \geq n_a + (2\,M-1)n_b - 1.$$

2.2. Linear Innovations Representation

Assume further the following:

(H4) Input sequence $\{\mathbf{w}(k)\}$ is zero-mean, spatially independent and temporally i.i.d. with each of its components having non-zero fourth cumulants. Take $E\{\mathbf{w}(k)\mathbf{w}^{\mathcal{H}}(k)\} = I_M$ where I_M is the $M \times M$ identity matrix and the superscript \mathcal{H} is the Hermitian operation.

Lemma 1. Under (H1)-(H4), $\{s(k)\}$ may be represented

$$s(k) = -\sum_{i=1}^{K} D_i s(k-i) + I_s(k)$$
 (2-3)

where $K \leq n_a + M n_b$, \mathbf{D}_i 's are some $N \times N$ matrices and $\{I_s(k)\}$ is a zero-mean white $N \times 1$ random sequence (linear innovations for $\{\mathbf{s}(k)\}$) with

$$I_s(k) = \mathbf{F}_0 \mathbf{w}(k). \quad \bullet \qquad (2-4)$$

Proof: See [16]. \Box

It follows from (1-1) and Lemma 1 that

 $\mathcal{D}(z)\mathbf{s}(k) = \mathcal{D}(z)\mathcal{F}(z)\mathbf{w}(k) = \mathbf{F}_0\mathbf{w}(k)$ (2 - 5)

where $\mathcal{D}(z) = I_N + \sum_{i=1}^{K} \mathbf{D}_i z^{-i}$. Since $\mathbf{w}(k)$ is full-rank and white, it follows from (2-5) that

$$\mathcal{D}(z)\mathcal{F}(z) = \mathbf{F}_{0} \quad \Rightarrow \quad \left(\mathbf{F}_{0}^{\mathcal{H}}\mathbf{F}_{0}\right)^{-1} \mathbf{F}_{0}^{\mathcal{H}}\mathcal{D}(z)\mathcal{F}(z) = I_{\boldsymbol{M}}.$$

$$(2-6)$$

This work was supported by NSF Grant CCR-9803850 and by ONR Grant N00014-97-1-0822.

Clearly the $M \times N$ polynomial matrix $\mathcal{G}(z)$:= $(\mathbf{F}_0^{\mathcal{H}}\mathbf{F}_0)^{-1}\mathbf{F}_0^{\mathcal{H}}\mathcal{D}(z)$ is of degree $K \leq n_a + M n_b$ and it is a left inverse to $\mathcal{F}(z)$. This result is summarized below.

Lemma 2. Under (H1)-(H4), there exists an inte- $\begin{array}{l} \overbrace{\operatorname{ger} K \leq n_a + M n_b \text{ and a polynomial matrix } \mathcal{G}(z) = \\ \sum_{i=0}^{K} \mathbf{G}_i z^{-i} \text{ of degree } K \text{ such that } \mathcal{G}(z) \mathcal{F}(z) = I_M. \end{array}$

Lemma 3. Let \mathcal{R}_{ssL_e} denote a $[N(L_e+1)] \times [N(L_e+1)]$ matrix with its ij-th block element as $\mathbf{R}_{ss}(j-i) = E\{\mathbf{s}(k+i)\}$ $j-i)s^{\mathcal{H}}(k)$ }. Then under (H1)-(H4), $\rho(\mathcal{R}_{ssL_e}) \leq NL_e + M$ for $L_e \geq n_a + Mn_b$ where $\rho(A)$ denotes the rank of A. • Sketch of proof: It follows from Lemma 1 and (2-3) that

$$\begin{bmatrix} I_N & \mathbf{D}_1 & \cdots & \mathbf{D}_{n_a+Mn_b} & 0 & \cdots & 0 \end{bmatrix} \mathcal{R}_{ssL_e}$$
$$= \begin{bmatrix} \mathbf{F}_0 \mathbf{F}_0^{\mathcal{H}} & 0 & \cdots & 0 \end{bmatrix}. \qquad (2-7)$$

Apply Sylvester's inequality [7, p. 655] to (2-7) to deduce the desired result. \Box

3. EQUALIZATION: NO COMMON ZEROS

Assume that (H1)-(H4) hold true. In addition assume the following regarding the measurement noise:

3.1. Zero-Delay Zero-Forcing Blind Equalizer Using (1-2), (2-1) and (2-2), we have

$$\sum_{l=0}^{\infty} \mathbf{G}_{m-l} \mathbf{F}_{l} = \begin{cases} I_{M}, & m=0\\ 0, & m=1, 2, \cdots, \end{cases}$$
(3-1)

leading to

$$\begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \cdots & \mathbf{G}_{L_e} \end{bmatrix} \overline{\mathbf{S}} = \begin{bmatrix} 1 & 0 & \cdots & \cdots \\ (3-2) \end{bmatrix}$$

where \overline{S} is the $(N(L_e+1)) \times \infty$ matrix given by

$$\overline{\mathcal{S}} = \begin{bmatrix} \mathbf{F}_{0} & \mathbf{F}_{1} & \mathbf{F}_{2} & \mathbf{F}_{3} & \cdots & \cdots & \cdots \\ 0 & \mathbf{F}_{0} & \mathbf{F}_{1} & \mathbf{F}_{2} & \cdots & \cdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \\ 0 & 0 & \cdots & 0 & \mathbf{F}_{0} & \mathbf{F}_{1} & \cdots \end{bmatrix} . \quad (3-3)$$

Let $\overline{S}^{\#}$ denote the pseudoinverse of \overline{S} . By [15, Prop. 1], $\overline{S}^{\#} = \overline{S}^{\mathcal{H}} (\overline{S} \overline{S}^{\mathcal{H}})^{\#}$. Then the minimum norm solution to the FIR equalizer is given by [15, Sec. 6.11]

$$\begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \cdots & \mathbf{G}_{L_e} \end{bmatrix} = \begin{bmatrix} \mathbf{F}_0^{\mathcal{H}} & 0 & \cdots & 0 \end{bmatrix} (\overline{\mathcal{S}} \overline{\mathcal{S}}^{\mathcal{H}})^{\#}.$$

$$(3-4)$$

In a fashion similar to \mathcal{R}_{ssL_e} in Lemma 2, let \mathcal{R}_{yyL_e} denote a $[N(L_e+1)] \times [N(L_e+1)]$ matrix with its *ij*-th block element as $\mathbf{R}_{yy}(j-i) = E\{\mathbf{y}(k+j-i)\mathbf{y}^{\mathcal{H}}(k)\}$; define similarly \mathcal{R}_{nnL_e} pertaining to the additive noise. Carry out an eigendecomposition of \mathcal{R}_{yyL_e} . Then the smallest N-Meigenvalues of \mathcal{R}_{yyL_e} equal σ_n^2 because under (H1)-(H4), $\rho(\mathcal{R}_{ssL_e}) \leq NL_e + M$ whereas $\rho(\mathcal{R}_{nnL_e}) = NL_e + N =$ $\rho(\mathcal{R}_{yyL_e})$. Thus a consistent estimate $\widehat{\sigma}_n^2$ of σ_n^2 is obtained by taking it as the average of the smallest N-M eigenvalues of $\widehat{\mathcal{R}}_{yyL_e}$, the data-based consistent estimate of \mathcal{R}_{yyL_e} . Under (H4) and (H5),

$$(\overline{\mathcal{S}}\overline{\mathcal{S}}^{\mathcal{H}}) = \mathcal{R}_{ssL_e} = \mathcal{R}_{yyL_e} - \mathcal{R}_{nnL_e} = \mathcal{R}_{yyL_e} - \sigma_n^2 I.$$

$$(3-5)$$

Thus, $(\overline{\mathcal{S}} \,\overline{\mathcal{S}}^{\mathcal{H}})$ can be estimated from noisy data. However, we don't know \mathbf{F}_0 . To this end, we seek an $N \times N$ FIR filter $\mathcal{G}_a(z) := \sum_{i=0}^{L_e} \mathbf{G}_{ai} z^{-i}$ satisfying

$$\begin{bmatrix} \mathbf{G}_{a0} & \mathbf{G}_{a1} & \cdots & \mathbf{G}_{aL_e} \end{bmatrix} = \begin{bmatrix} I_N & 0 & \cdots & 0 \end{bmatrix} \mathcal{R}^{\#}_{ssL_e}.$$

$$(3-6)$$

Comparing (3-4) and (3-6) it follows that

$$\begin{bmatrix} \mathbf{G}_0 & \mathbf{G}_1 & \cdots & \mathbf{G}_{L_e} \end{bmatrix} = \mathbf{F}_0^{\mathcal{H}} \begin{bmatrix} \mathbf{G}_{a0} & \mathbf{G}_{a1} & \cdots & \mathbf{G}_{aL_e} \end{bmatrix}$$
(3 - 7)

leading to

$$\sum_{i=0}^{L_{e}} \mathbf{G}_{i} z^{-i} =: \mathcal{G}(z) = \mathbf{F}_{0}^{\mathcal{H}} \mathcal{G}_{a}(z). \qquad (3-8)$$

In practice, therefore, we apply $\mathcal{G}_a(z)$ to the data leading to

$$\mathbf{v}(k) := \mathcal{G}_a(z)\mathbf{y}(k) = \mathbf{v}_s(k) + \mathcal{G}_a(z)\mathbf{n}(k)$$
 (3 - 9)

such that

$$\mathbf{F}_{0}^{\mathcal{H}}\mathbf{v}_{s}(k) = \mathbf{w}(k) \qquad (3-10)$$

where

$$\mathcal{J}_{s}(k) := \mathcal{G}_{a}(z) \left[\mathbf{y}(k) - \mathbf{n}(k) \right] = \mathcal{G}_{a}(z) \mathbf{s}(k).$$
 (3 - 11)

In (3-10) $\{\mathbf{w}(k)\}$ is a white *M*-vector sequence (by assumption (H4)), however, $\{\mathbf{v}_s(k)\}$ is not necessarily a white vector sequence. Given the second-order statistics of $\{\mathbf{v}_s(k)\}$, how does one estimate \mathbf{F}_0 so that $\{\mathbf{w}(k)\}$ satisfying (H4) is recovered? We need to have $\mathbf{R}_{ww}(\tau) :=$ $E\{\mathbf{w}(k+ au)\mathbf{w}^{\mathcal{H}}(k)\}=0 ext{ for } | au|
eq 0 ext{ and }
ho(\mathbf{R}_{ww}(0))=M.$ By (3-10), $\mathbf{R}_{ww}(\tau) = \mathbf{F}_0^{\mathcal{H}} \mathbf{R}_{v_s v_s}(\tau) \mathbf{F}_0$ where $\mathbf{R}_{v_s v_s}(\tau) :=$ $E\{\mathbf{v}_s(k+\tau)\mathbf{v}_s^{\mathcal{H}}(k)\}$. Define (L > 0 is some large integer)

$$\overline{R}_{v_s v_s} := [\mathbf{R}_{v_s v_s}^T(-1) \ \mathbf{R}_{v_s v_s}^T(-2) \ \cdots \ \mathbf{R}_{v_s v_s}^T(-L) \ Q^*]^T$$
(3-12)

where $Q = [\mathbf{q}_{r+1}, \dots, \mathbf{q}_N]$, $r = \rho(\mathbf{R}_{v_s v_s}(0))$ with $M \leq r \leq N$, \mathbf{q}_i 's $(r+1 \leq i \leq N)$ are orthonormal eigenvectors of $\mathbf{R}_{v_s v_s}(0)$ corresponding to zero eigenvalues, and the symbol * denotes the complex conjugation operation. Note that if * denotes the complex conjugation operation. Note that if r = N, Q is omitted from (3-12). Let \mathbf{F}_{0s} and \mathbf{F}_{0n} be the orthogonal projections of \mathbf{F}_0 onto the r-dimensional 'signal subspace' (range space) and (N - r)-dimensional 'noise subspace' (null space), respectively, of $\mathbf{R}_{v_s v_s}(0)$. By (3-10), $\rho(\mathbf{F}_{0s}) = M$. Then $\mathbf{F}_0 = \mathbf{F}_{0s} + \mathbf{F}_{0n}$ with
$$\begin{split} \mathbf{F}_{0s}^{\mathcal{H}}\mathbf{F}_{0n} &= 0 \text{ and } \mathbf{R}_{v_sv_s}(0)\mathbf{F}_{0n} = 0. \text{ It then follows that} \\ E\{\mathbf{F}_{0n}^{\mathcal{H}}\mathbf{v}_s(k)\mathbf{v}_s^{\mathcal{H}}(k)\mathbf{F}_{0n}\} &= \mathbf{F}_{0n}^{\mathcal{H}}\mathbf{R}_{v_sv_s}(0)\mathbf{F}_{0n} = 0; \text{ hence,} \end{split}$$
 $\mathbf{F}_{0n}^{\mathcal{H}}\mathbf{v}_s(k) = 0$ with probability one (w.p.1) and (cf. (3-10))

$$\mathbf{F}_{0s}^{\mathcal{H}}\mathbf{v}_{s}(k) = \mathbf{w}(k). \qquad (3-13)$$

Lemma 4. $\overline{R}_{v_s v_s}$ is rank deficient for any $L \ge 1$ such that $\overline{R}_{v_s v_s} \mathbf{F}_{0s} = 0$ and $\rho(\mathbf{F}_{0s}) = M$.

Proof: By construction $Q^{\mathcal{H}}\mathbf{F}_{0s} = 0$ as columns of Q span the noise-subspace of $\mathbf{R}_{v_s v_s}(0)$ and \mathbf{F}_{0s} is the orthogonal projection of \mathbf{F}_0 onto the r-dimensional signal subspace of $\mathbf{R}_{v_s v_s}(0)$. Furthermore, we have

$$\mathbf{R}_{wv_s}(au) = E\{\mathbf{w}(k+ au)\mathbf{v}^{\mathcal{H}}_s(k)\} = 0 \quad \forall au \geq 1 \qquad (3-14)$$

because $\mathbf{v}_s(k)$ is obtained by causal filtering of $\mathbf{y}(k)$, hence of $\mathbf{w}(k)$. Using (3-13) in (3-14) it then follows that there exists a $N \times M$ $\mathbf{F}_{0s} \neq 0$ such that

$$\mathbf{F}_{0s}^{\mathcal{H}} \mathbf{R}_{v_s v_s}(\tau) = 0 \ \forall \tau \ge 1 \ \Rightarrow \ \mathbf{R}_{v_s v_s}(-\tau) \mathbf{F}_{0s} = 0 \ \forall \tau \ge 1.$$

$$(3-15)$$

The desired result is then immediate. \Box

Pick a $N \times M$ column-vector \mathbf{H}_0 to equal the rightmost M right singular vectors in a singular-value decomposition (SVD) $\overline{R}_{v_s v_s} = U \Sigma V^{\mathcal{H}}$, i.e. the right singular vectors corresponding to the M smallest singular values. Therefore, $\rho(\mathbf{H}_0) = M$. Then since ideally the M smallest singular values of $\overline{R}_{v_s v_s}$ are zero, we have $\mathbf{H}_0^{\mathcal{H}} \mathbf{R}_{v_s v_s}(-\tau) \mathbf{H}_0 = 0$ for $\tau = 1, 2, \cdots, L$. This, in turn, implies that

$$\left(\mathbf{H}_{0}^{\mathcal{H}}\mathbf{R}_{\boldsymbol{v}_{s}\boldsymbol{v}_{s}}(-\tau)\mathbf{H}_{0}\right)^{\mathcal{H}} = 0 \text{ for } \tau = 1, 2, \cdots, L. (3-16)$$

Moreover $Q^{\mathcal{H}}\mathbf{H}_0 = 0$. An eigendecomposition yields

$$\mathbf{R}_{\boldsymbol{v}_{s}\boldsymbol{v}_{s}}(0) = \sum_{i=1}^{r} \sigma_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\mathcal{H}} = \overline{Q} \Sigma \overline{Q}^{\mathcal{H}} \qquad (3-17)$$

where $\overline{Q} = [\mathbf{q}_1; \cdots; \mathbf{q}_r]$, \mathbf{q}_i 's $(1 \le i \le r)$ are orthonormal eigenvectors of $\mathbf{R}_{v_s v_s}(0)$ corresponding to non-zero eigenvalues σ_i 's and $\Sigma = \text{diag}\{\sigma_1, \cdots, \sigma_r\}$. Thus columns of \overline{Q} span the signal subspace of $\mathbf{R}_{v_s v_s}(0)$ and the columns of Q span the noise subspace of $\mathbf{R}_{v_s v_s}(0)$. Since $Q^{\mathcal{H}}\mathbf{H}_0 = 0$, we have $\mathbf{H}_0 = \overline{Q}\mathbf{C}$ where \mathbf{C} is $r \times M$ and $\rho(\mathbf{C}) = M$. Then $\mathbf{H}_0^{\mathcal{H}}\mathbf{R}_{v_s v_s}(0)\mathbf{H}_0 = \widetilde{\mathbf{C}}^{\mathcal{H}}\widetilde{\mathbf{C}}$ where $\widetilde{\mathbf{C}} = \Sigma^{1/2}\mathbf{C}$ and $\rho(\widetilde{\mathbf{C}}) = M$. Finally, by result R11 on p. 261 of [9], $\rho(\widetilde{\mathbf{C}}^{\mathcal{H}}\widetilde{\mathbf{C}}) = \rho(\widetilde{\mathbf{C}}^{\mathcal{H}}\mathbf{R}_{v_s v_s}(0)\mathbf{H}_0) = M$.

The overall system with $\mathbf{w}(k)$ as input and $\mathbf{H}_0^{\mathcal{H}}\mathbf{v}_s(k)$ as output has the transfer function

 $\mathbf{H}_{0}^{\mathcal{H}}\mathcal{G}_{a}(z)\mathcal{A}^{-1}(z)\mathcal{B}(z)$

$$= [\det(\mathcal{A}(z))I_M]^{-1}\mathbf{H}_0^{\mathcal{H}}\mathcal{G}_a(z)\mathrm{adj}(\mathcal{A}(z))\mathcal{B}(z) \qquad (3-18)$$

and therefore, is an autoregressive moving average (ARMA) model with autoregressive (AR) order no more than Nn_a and moving average (MA) order no more than $n_b + L_e +$ $(N-1)n_a$, denoted by ARMA($Nn_a, n_b + L_e + (N-1)n_a$). Therefore, it follows from (3-16) that $\mathbf{H}_0^{\mathcal{H}} \mathbf{v}_s(k)$ is zero-mean white if $L \ge n_b + L_e + (N-1)n_a$. Moreover, since $\mathbf{v}_s(k)$ is obtained by causal filtering of $\mathbf{w}(k)$, it follows that $\mathbf{H}_0^{\mathcal{H}} \mathbf{v}_s(k) =$ $\sum_{i=0}^{\infty} \mathbf{P}_i \mathbf{w}(k-i)$ where $M \times M \mathcal{P}(z) = \sum_{i=0}^{\infty} \mathbf{P}_i z^{-i}$ is stable satisfying $\mathcal{P}(e^{j\omega}) \mathcal{P}^{\mathcal{H}}(e^{j\omega}) = I_M \ \forall \omega$ (allpass). Therefore, we have $E\{\mathbf{H}_0^{\mathcal{H}} \mathbf{v}_s(k+\tau) \mathbf{w}^{\mathcal{H}}(k)\} = \mathbf{P}_{\tau}$ for $\tau \ge 0$, and using (3-13), we have $E\{\mathbf{H}_0^{\mathcal{H}} \mathbf{v}_s(k+\tau) \mathbf{w}^{\mathcal{H}}(k)\} = \mathbf{H}_0^{\mathcal{H}} \mathbf{R}_{v_s v_s}(\tau) \mathbf{F}_{0,s} =$ 0 (by construction of \mathbf{H}_0) for $\tau \ge 1$. Thus $\mathbf{P}_{\tau} = 0$ for $\tau \ge 1$.

$$\mathbf{H}_{0}^{\mathcal{H}}\mathbf{v}_{s}(k) = \mathbf{P}_{0}\mathbf{w}(k)$$
 such that $\rho(\mathbf{P}_{0}) = M$. (3-19)

By (3-11) and (3-19), we have

$$\mathbf{H}_{0}^{\mathcal{H}}\mathcal{G}_{a}(z)\mathbf{y}(k) = \mathbf{P}_{0}\mathbf{w}(k) + \mathbf{H}_{0}^{\mathcal{H}}\mathcal{G}_{a}(z)\mathbf{n}(k) \; \ni \; \rho(\mathbf{P}_{0}) = M.$$

$$(3 - 20)$$

Since $\mathbf{P}_0 \mathbf{U} \mathbf{U}^{\mathcal{H}} \mathbf{P}_0^{\mathcal{H}} = \mathbf{P}_0 \mathbf{P}_0^{\mathcal{H}}$ for any unitary matrix **U**, one can not uniquely determine \mathbf{P}_0 from (3-20) given secondorder statistics of data $\mathbf{y}(k)$, and knowledge (estimates) of \mathbf{H}_0 , filter $\mathcal{G}_a(z)$ and noise variance σ_n^2 [13]. One has to exploit higher-order statistics (HOS) of data. The model (3-20) is an instantaneous mixture model [13], therefore, any existing method may be applied to estimate \mathbf{P}_0 given (3-20). In this paper we have used the joint diagonalization procedure of [13]. The required estimate of \mathbf{P}_0 is obtained as

$$\mathbf{P}_0 = \mathbf{W}^{-1} \mathbf{U} \qquad (3-21)$$

where **W** "diagonalizes" $\mathbf{H}_{0}^{\mathcal{H}} \mathbf{R}_{v_{s}v_{s}}(0) \mathbf{H}_{0}$ into an identity matrix and **U** is a unitary matrix obtained via the joint diagonalization procedure of [13] using fourth-order cumulants of $\mathbf{W}\mathbf{H}_{0}^{\mathcal{H}}\mathcal{G}_{a}(z)\mathbf{y}(k)$. Let \mathbf{l}_{i} $(i = 1, 2, \dots, M)$ denote the orthonormal eigenvectors of $\mathbf{H}_{0}^{\mathcal{H}}\mathbf{R}_{v_{s}v_{s}}(0)\mathbf{H}_{0}$ with the

corresponding eigenvalues γ_i 's. Set $\mathcal{L} = [\mathbf{l}_1 : \cdots : \mathbf{l}_M]$ and , $= diag(\gamma_1, \cdots, \gamma_M)$. Then

$$\mathbf{W}$$
 = , $^{-1/2}\mathcal{L}^{\mathcal{H}}$ (3 - 22)

diagonalizes $\mathbf{H}_{0}^{\mathcal{H}}\mathbf{R}_{v_{s}v_{s}}(0)\mathbf{H}_{0}$ to an identity matrix: $\mathbf{W}\left(\mathbf{H}_{0}^{\mathcal{H}}\mathbf{R}_{v_{s}v_{s}}(0)\mathbf{H}_{0}\right)\mathbf{W}^{\mathcal{H}}=I_{M}$. Finally, we have

$$\overline{\mathbf{H}}_{0}^{\mathcal{H}}\mathbf{v}_{s}(k) =: \mathbf{w}(k) \text{ where } \overline{\mathbf{H}}_{0} = \mathbf{H}_{0}\mathbf{W}^{\mathcal{H}}\mathbf{U}.$$
 (3-23)

Remark 1. Using (3-11) and (3-23) it follows that $\overline{\mathbf{H}}_{0}^{\mathcal{H}}\left[\sum_{i=0}^{L_{e}} \mathbf{G}_{ai}\mathbf{s}(k-i)\right] = \mathbf{w}(k)$. The filter $\overline{\mathbf{H}}_{0}^{\mathcal{H}}\mathcal{G}_{a}(z)$ whitens the noise-free received signal. Moreover, the derivation of this filter was based upon whitening of $\overline{\mathbf{H}}_{0}^{\mathcal{H}}\mathcal{G}_{a}(z)\mathbf{s}(k)$. These considerations motivate the name a whitening approach for the proposed technique. Our approach is far more structured and different than that of [12]. \Box

3.2. MMSE Equalizer with Delay d

Using the orthogonality principle, the MMSE equalizer of length $L_e + 1$ to estimate $\mathbf{w}(k-d)$ $(d \ge 0)$ based upon $\mathbf{y}(n)$, $n = k, k - 1, \dots, k - L_e$, satisfies

$$\begin{bmatrix} \overline{\mathbf{G}}_{d,0} & \overline{\mathbf{G}}_{d,1} & \cdots & \overline{\mathbf{G}}_{d,L_e} \end{bmatrix} =$$

 $\begin{bmatrix} \mathbf{F}_{d}^{\mathcal{H}} & \mathbf{F}_{d-1}^{\mathcal{H}} & \cdots & \mathbf{F}_{0}^{\mathcal{H}} & 0 & \cdots & 0 \end{bmatrix} \mathcal{R}_{yyL_{e}}^{-1} \cdot (3 - 24)$ Clearly one can obtain a consistent estimate of $\mathcal{R}_{yyL_{e}}$ from

Clearly one can obtain a consistent estimate of \mathcal{K}_{yyL_e} from the given data. It remains to estimate F_l 's to complete the design. Here the discussion of Sec. 3.1 becomes relevant. From (3-11) and (3-23) we have

$$\overline{\mathbf{H}}_{0}^{\mathcal{H}}\mathbf{v}_{s}(n) = \sum_{i=0}^{L_{e}} \overline{\mathbf{H}}_{0}^{\mathcal{H}}\mathbf{G}_{ai}\mathbf{s}(n-i). \qquad (3-25)$$

Using (3-25) and taking expectations we have

$$E\{\mathbf{s}(n)\mathbf{v}_{s}^{\mathcal{H}}(n-\tau)\}\overline{\mathbf{H}}_{0}=\sum_{i=0}^{\mathcal{L}_{e}}\mathbf{R}_{ss}(\tau+i)\mathbf{G}_{ai}^{\mathcal{H}}\overline{\mathbf{H}}_{0}.$$
 (3-26)

Using (1-1), (1-2) and (3-23) we have

$$E\{\mathbf{s}(n)\mathbf{v}_{s}^{\mathcal{H}}(n-\tau)\}\overline{\mathbf{H}}_{0}=\mathbf{F}_{\tau}.$$
 (3-27)

Hence, we have from (3-26) and (3-27)

$$\mathbf{F}_{\tau}^{\mathcal{H}} = \overline{\mathbf{H}}_{0}^{\mathcal{H}} \sum_{i=0}^{L_{e}} \mathbf{G}_{ai} \mathbf{R}_{ss}^{\mathcal{H}}(\tau+i). \qquad (3-28)$$

Substitute the results of (3-28) for $\tau = 0, 1, \dots, d$ in (3-24) to complete the design. The MMSE estimate $\widehat{\mathbf{w}}(t-d)$ of $\mathbf{w}(t-d)$ is then given by $\widehat{\mathbf{w}}(t-d) = \sum_{i=0}^{L_e} \overline{\mathbf{G}}_{d,i} \mathbf{y}(t-i)$.

4. COMMON MINIMUM-PHASE ZEROS

Here the MIMO transfer function is

$$\mathcal{F}(z) = \mathcal{A}^{-1}(z)\mathcal{B}(z)\mathcal{B}_{c}(z), \quad \mathcal{B}_{c}(z) = \sum_{i=0}^{n_{bc}} \mathbf{B}_{ci} z^{-i}$$

where $\mathcal{B}(z)$ satisfies (H2) and $\mathcal{B}_c(z)$ is a finite-degree $\dot{M} \times \dot{M}$ polynomial that collects all the common zeros/factors of the subchannels. Assume that

(H6) Given model (4-1), $det(\mathcal{B}_c(z)) \neq 0$ for $|z| \geq 1$.

Then while $\mathcal{A}^{-1}(z)\mathcal{B}(z)$ has a finite left-inverse, $\mathcal{B}_c^{-1}(z)$ is IIR though causal under (H6). Then (3-2) holds true approximately for "large" L_e , the approximation getting better with increasing L_e . Similarly Lemmas 1 and 2 hold true approximately for "large" K and Lemma 3 also holds true approximately for $L_e \geq K$. Note also that $\rho(\mathbf{F}_0) = M$ where $\mathbf{F}_0 = \mathbf{B}_0 \mathbf{B}_{c0}$ since, by (H6), $\rho(\mathbf{B}_{c0}) = M$ (evaluate det $(\mathcal{B}_c(z))$ at $z = \infty$). It is then readily seen that the developments of Sec. 3 apply to the current case also.

Fig. 1. Normalized MSE and probability of symbol detection error P_e for the two users after MMSE equalization with d = 3. Record length T = 500 symbols for equalizer design. Averages over 100 Monte Carlo runs. The designed equalizer was applied to record lengths of 3000 symbols for performance evaluation.

5. SIMULATION EXAMPLE

We consider a wireless communications scenario with two (M = 2) 4-QAM user signals arriving at a uniform linear array (half-wavelength spacing) of N = 4 sensors via a frequency selective multipath channel. The signaling pulse shape for both the users was a raised-cosine pulse with a roll-off factor of 0.2, the pulse being truncated to a length of $4T_s$ where T_s = symbol duration. The array measurements are assumed to be sampled at baud rate with sampling interval T_s seconds and the two sources have the same baud rate. The relative time delay τ (relative to the first arrival), the angle of arrival θ (in degrees w.r.t. the array broadside) and the relative attenuation factor (amplitude) α , (τ, θ, α) ,

for the two sources were selected as:

$$w_1$$
: $(0T_s, 40^\circ, 1.0)$, $(0.3T_s, 20^\circ, 1.0)$, $(0.6T_s, -20^\circ, 1.0)$
 w_2 : $(0T_s, 10^\circ, 1.0)$, $(1.1T_s, -15^\circ, 1.0)$, $(1.6T_s, -1^\circ, 1.0)$.

(5-1)Sampling of received signal at the array leads to a discretetime MIMO FIR model $\mathcal{B}(z)$ with N = 4, M = 2 and $n_b = 4$ such that $\mathbf{B}_0 \neq 0$ and $\mathbf{B}_4 \neq 0$ (see Sec. 1). The effective MIMO channel was taken to be

$$\mathcal{F}(z) = \mathcal{B}(z)\mathcal{B}_{c}(z) \,\,\, ext{where} \,\,\, \mathcal{B}_{c}(z) = (1 - 0.5 z^{-1})I_{2}. \eqno(5-2)$$

The part $\mathcal{B}_c(z)$ in (5-2) may represent some filtering at the transmitter or receiver, and it leads to a system with common zeros in the two subchannels.

An MMSE equalizer of length $L_e = 7$ (8 taps per subchannel, totaling 32 taps) was designed with a delay d = 3for each of the two sources. Fig. 1 shows the results of simulations for a record length of T = 500 symbols. It is seen that the proposed approach works quite well. Also presence of a common (minimum-phase) zero has not caused any problems.

6. **REFERENCES**

- G.B. Giannakis and S.D. Halford, *IEEE Trans. Signal* Proc., vol. SP-45, pp. 2277-2292, Sept. 1997.
- [2] J.K. Tugnait, IEEE Trans. Signal Processing, vol. SP-45, pp. 268-271, Jan. 1997.
- [3] Special Issue, IEEE Transactions on Signal Processing, vol. SP-45, Jan. 1997.
- [4] L. Tong, G. Xu and T. Kailath, IEEE Trans. Information Theory, vol. IT-40, pp. 340-349, March 1994.
- [5] E. Moulines, P. Duhamel, J. Cardoso and S. Mayrargue, *IEEE Trans. Signal Proc.*, vol. SP-43, pp. 516-525, Feb. 1995.
- [6] J.K. Tugnait, in Proc. 30th Annual Asilomar Conf. Signals Systems Computers, pp. 295-299, Pacific Grove, CA, Nov. 1996.
- [7] T. Kailath, Linear Systems. Englewood Cliffs, NJ: Prentice-Hall, 1980.
- [8] B. Huang & J.K. Tugnait, in Proc. 1998 IEEE ICASSP, pp. VI-3409-3412, Seattle, WA, May 1998.
- [9] P. Stoica and R. Moses, Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice Hall, 1997.
- [10] Z. Ding, *IEEE Trans. Signal Proc.*, vol. SP-45, pp. 3053-3061, Dec. 1997.
- K. Abed-Meraim et al. IEEE Trans. Signal Processing, vol. SP-45, pp. 42-55, Jan. 1997.
- [12] R.W. Liu and G. Dong, IEEE Trans. Circuits & Systems-I: Fundamental Theory & Applications, vol. 44, May 1997.
- [13] J.F. Cardoso and A. Souloumiac, IEE Proc.-F, Radar & Signal Proc., vol. 140, pp. 362-370, Dec. 1993.
- [14] K. Abed-Meraim et al. IEEE Trans. Signal Processing, vol. SP-45, pp. 694-705, March 1997.
- [15] D.G. Luenberger, Optimization by Vector Space Methods. New York: John Wiley, 1969.
- [16] J.K. Tugnait, "On multi-step linear predictors for M.I.M.O. F.I.R./I.I.R. channels and related blind equalization," in *Proc. 1998 IEEE DSP Workshop*, Paper #110, Bryce Canyon, Utah, Aug. 1998.