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ABSTRACT

Channel estimation and blind equalization of MIMO (mul-
tiple-input multiple-output) communications channels is
considered using primarily the second-order statistics of
the data. We consider estimation of (partial) channel im-
pulse response and design of �nite-length MMSE (minimum
mean-square error) blind equalizers. The basis of the ap-
proach is the design of a zero-forcing equalizer that whitens
the noise-free data. We allow in�nite impulse response
(IIR) channels. Moreover, the multichannel transfer func-
tion need not be column-reduced. Our approaches also work
when the \subchannel" transfer functions have common ze-
ros so long as the common zeros are minimum-phase zeros.
The channel length or model orders need not be known.
The sources are recovered up to a unitary mixing matrix
and are further `unmixed' using higher-order statistics of
the data. An illustrative simulation example is provided.

1. INTRODUCTION

Consider a discrete-time MIMO system with N outputs and
M inputs:

y(k) = F(z)w(k) + n(k) = s(k) + n(k) (1� 1)

where y(k) = [y1(k)
... y2(k)

... � � �
...yN (k)]T , similarly for s(k),

w(k) and n(k), and z is the Z�transform variable as well
as the backward-shift operator (i.e., z�1w(k) = w(k � 1),
etc.), s(k) is the noise-free output, n(k) is the additive mea-
surement noise and the N �M matrix F(z) is given by

F(z) :=

1X
l=0

Flz
�l = A�1(z)B(z); (1� 2)

A(z) = I +

naX
i=1

Aiz
�i and B(z) =

nbX
i=0

Biz
�i
: (1� 3)

We allow all of the above variables to be complex-valued.
Such models arise in several useful baseband-equivalent

digital communications and other applications [1]-[6],[8],
[10]-[12],[14]. In these applications one of the objectives
is to recover the inputs w(k) given the noisy measurements
but not given the knowledge of the system transfer func-
tion. A large number of papers (see [4],[5],[10],[11],[14])
have concentrated on a two-step procedure: �rst estimate
the channel impulse response (IR) and then design an equal-
izer using the estimated channel. A fundamental restriction
in these works is that the channel is FIR with no common
zeros among the various subchannels. A few (see [1]and
[12], e.g.) have proposed direct design of the equalizer by-
passing channel estimation. Still they assume FIR (SIMO)
channels with no common zeros.
In this paper we allow IIR channels. The MIMO channel

does not have to be column-reduced. We will also allow
common zeros so long as they are minimum-phase. Fi-
nally, in the presence of nonminimum-phase common zeros,
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our proposed approach equalizes the spectrally-equivalent
minimum-phase counterpart of F(z); it does not \fall
apart" unlike quite a few existing approaches. Our pro-
posed approach extends the SIMO results of [1] and [8] to
MIMO channels.

2. PRELIMINARIES

2.1. FIR Inverses
Assume the following:

(H1) N > M .
(H2) RankfB(z)g = M 8z including z =1 but exclud-

ing z = 0, i.e., B(z) is irreducible [7, Sec. 6.3].
(H3) det(A(z)) 6= 0 for jzj � 1.

It has been shown in [6] (using some results from [2]) that
under (H1)-(H3) there exists a �nite degree left-inverse
(not necessarily unique) of F(z):

G(z)F(z) = IM (2� 1)

where G(z) is M �N given by

G(z) =

LeX
l=0

Glz
�l for any Le � na + (2M � 1)nb � 1:

(2� 2)

2.2. Linear Innovations Representation
Assume further the following:

(H4) Input sequence fw(k)g is zero-mean, spatially in-
dependent and temporally i.i.d. with each of its
components having non-zero fourth cumulants.
Take Efw(k)wH(k)g = IM where IM is theM�M
identity matrix and the superscript H is the Her-
mitian operation.

Lemma 1. Under (H1)-(H4), fs(k)g may be represented
as

s(k) = �

KX
i=1

Dis(k � i) + Is(k) (2� 3)

where K � na +Mnb, Di's are some N �N matrices and
fIs(k)g is a zero-mean white N�1 random sequence (linear
innovations for fs(k)g) with

Is(k) = F0w(k): � (2� 4)

Proof: See [16]. 2

It follows from (1-1) and Lemma 1 that

D(z)s(k) = D(z)F(z)w(k) = F0w(k) (2� 5)

where D(z) = IN +
PK

i=1
Diz

�i. Since w(k) is full-rank
and white, it follows from (2-5) that

D(z)F(z) = F0 )
�
FH0 F0

��1
FH0 D(z)F(z) = IM :

(2� 6)



Clearly the M � N polynomial matrix G(z) :=�
FH0 F0

�
�1
FH0 D(z) is of degree K � na + Mnb and it

is a left inverse to F(z). This result is summarized below.

Lemma 2. Under (H1)-(H4), there exists an inte-
ger K � na + Mnb and a polynomial matrix G(z) =PK

i=0
Giz

�i of degree K such that G(z)F(z) = IM . �

Lemma 3. Let RssLe denote a [N(Le+1)]� [N(Le+1)]
matrix with its ij-th block element as Rss(j� i) = Efs(k+
j�i)sH(k)g. Then under (H1)-(H4), �(RssLe) � NLe+M
for Le � na +Mnb where �(A) denotes the rank of A. �
Sketch of proof: It follows from Lemma 1 and (2-3) that

[ IN D1 � � � Dna+Mnb 0 � � � 0 ]RssLe

=
�
F0F

H
0 0 � � � 0

�
: (2� 7)

Apply Sylvester's inequality [7, p. 655] to (2-7) to deduce
the desired result. 2

3. EQUALIZATION: NO COMMON ZEROS

Assume that (H1)-(H4) hold true. In addition assume the
following regarding the measurement noise:

(H5) fn(k)g is zero-mean Gaussian with Efn(k +
�)nH(k)g = �2nIN�(�).

3.1. Zero-Delay Zero-Forcing Blind Equalizer
Using (1-2), (2-1) and (2-2), we have

1X
l=0

Gm�lFl =
n

IM ; m = 0
0; m = 1; 2; � � � ; (3� 1)

leading to

[ G0 G1 � � � GLe ]S = [ 1 0 � � � � � � ]
(3� 2)

where S is the (N(Le + 1))�1 matrix given by

S =

2
64
F0 F1 F2 F3 � � � � � � � � �
0 F0 F1 F2 � � � � � � � � �
...

...
...

...
0 0 � � � 0 F0 F1 � � �

3
75 : (3� 3)

Let S
#

denote the pseudoinverse of S. By [15, Prop. 1],

S
#

= S
H

(S S
H

)#. Then the minimum norm solution to
the FIR equalizer is given by [15, Sec. 6.11]

[ G0 G1 � � � GLe ] =
�
FH0 0 � � � 0

�
(S S

H

)#:

(3� 4)
In a fashion similar to RssLe in Lemma 2, let RyyLe

denote a [N(Le + 1)] � [N(Le + 1)] matrix with its ij-th
block element as Ryy(j� i) = Efy(k+ j� i)yH(k)g; de�ne
similarly RnnLe pertaining to the additive noise. Carry out
an eigendecomposition of RyyLe. Then the smallest N �M

eigenvalues of RyyLe equal �2n because under (H1)-(H4),
�(RssLe) � NLe + M whereas �(RnnLe) = NLe + N =
�(RyyLe). Thus a consistent estimate b�2n of �2n is obtained
by taking it as the average of the smallest N�M eigenvalues

of bRyyLe, the data-based consistent estimate of RyyLe.
Under (H4) and (H5),

(S S
H

) = RssLe = RyyLe �RnnLe = RyyLe � �
2
nI:

(3� 5)

Thus, (S S
H

) can be estimated from noisy data. However,
we don't know F0. To this end, we seek an N � N FIR

�lter Ga(z) :=
PLe

i=0
Gaiz

�i satisfying

[ Ga0 Ga1 � � � GaLe ] = [ IN 0 � � � 0 ]R#

ssLe
:

(3� 6)
Comparing (3-4) and (3-6) it follows that

[ G0 G1 � � � GLe ] = FH0 [ Ga0 Ga1 � � � GaLe ]
(3� 7)

leading to

LeX
i=0

Giz
�i =: G(z) = FH0 Ga(z): (3� 8)

In practice, therefore, we apply Ga(z) to the data leading
to

v(k) := Ga(z)y(k) = vs(k) + Ga(z)n(k) (3� 9)

such that
FH0 vs(k) = w(k) (3� 10)

where

vs(k) := Ga(z) [y(k)� n(k)] = Ga(z)s(k): (3� 11)

In (3-10) fw(k)g is a white M�vector sequence (by
assumption (H4)), however, fvs(k)g is not necessarily a
white vector sequence. Given the second-order statistics
of fvs(k)g, how does one estimate F0 so that fw(k)g sat-
isfying (H4) is recovered? We need to have Rww(�) :=
Efw(k + �)wH(k)g = 0 for j� j 6= 0 and �(Rww(0)) = M .
By (3-10), Rww(�) = FH0 Rvsvs(�)F0 where Rvsvs(�) :=
Efvs(k + �)vHs (k)g. De�ne (L > 0 is some large integer)

Rvsvs := [RT
vsvs(�1) R

T
vsvs(�2) � � � RT

vsvs(�L)
... Q�]T

(3� 12)

where Q = [qr+1
... � � �

...qN ], r = �(Rvsvs(0)) with M � r �
N , qi's (r + 1 � i � N) are orthonormal eigenvectors of
Rvsvs(0) corresponding to zero eigenvalues, and the symbol
� denotes the complex conjugation operation. Note that if
r = N , Q is omitted from (3-12). Let F0s and F0n be
the orthogonal projections of F0 onto the r�dimensional
`signal subspace' (range space) and (N � r)�dimensional
`noise subspace' (null space), respectively, of Rvsvs(0).
By (3-10), �(F0s) = M . Then F0 = F0s + F0n with
FH0sF0n = 0 and Rvsvs(0)F0n = 0. It then follows that
EfFH0nvs(k)v

H
s (k)F0ng = FH0nRvsvs(0)F0n = 0; hence,

FH0nvs(k) = 0 with probability one (w.p.1) and (cf. (3-10))

FH0svs(k) = w(k): (3� 13)

Lemma 4. Rvsvs is rank de�cient for any L � 1 such

that RvsvsF0s = 0 and �(F0s) =M . �
Proof: By construction QHF0s = 0 as columns of Q span
the noise-subspace of Rvsvs(0) and F0s is the orthogonal
projection of F0 onto the r�dimensional signal subspace of
Rvsvs(0). Furthermore, we have

Rwvs(�) = Efw(k+ �)vHs (k)g = 0 8� � 1 (3� 14)

because vs(k) is obtained by causal �ltering of y(k), hence
of w(k). Using (3-13) in (3-14) it then follows that there
exists a N �M F0s 6= 0 such that

FH0sRvsvs(�) = 0 8� � 1 ) Rvsvs(��)F0s = 0 8� � 1:
(3� 15)



The desired result is then immediate. 2

Pick a N �M column-vector H0 to equal the rightmost
M right singular vectors in a singular-value decomposition
(SVD) Rvsvs = U�V H, i.e. the right singular vectors cor-
responding to the M smallest singular values. Therefore,
�(H0) = M . Then since ideally the M smallest singular

values of Rvsvs are zero, we have H
H
0 Rvsvs(��)H0 = 0 for

� = 1; 2; � � � ; L. This, in turn, implies that

�
HH

0 Rvsvs(��)H0

�H
= 0 for � = 1; 2; � � � ; L: (3� 16)

Moreover QHH0 = 0. An eigendecomposition yields

Rvsvs(0) =

rX
i=1

�iqiq
H

i = Q�Q
H

(3� 17)

where Q = [q1
... � � �

...qr], qi's (1 � i � r) are orthonormal
eigenvectors of Rvsvs(0) corresponding to non-zero eigen-
values �i's and � = diagf�1; � � � ; �rg. Thus columns of Q
span the signal subspace of Rvsvs(0) and the columns of
Q span the noise subspace of Rvsvs(0). Since Q

HH0 = 0,
we have H0 = QC where C is r � M and �(C) = M .

Then HH

0 Rvsvs(0)H0 = eCH eC where eC = �1=2C and

�(eC) = M . Finally, by result R11 on p. 261 of [9],

�(eCH eC) = �(eCeCH), and therefore, by Sylvester's inequal-
ity [7, p. 655], �(HH

0 Rvsvs(0)H0) =M .
The overall system with w(k) as input and HH

0 vs(k) as
output has the transfer function

HH

0 Ga(z)A
�1(z)B(z)

= [det(A(z))IM]�1HH

0 Ga(z)adj(A(z))B(z) (3� 18)

and therefore, is an autoregressive moving average (ARMA)
model with autoregressive (AR) order no more than Nna
and moving average (MA) order no more than nb + Le +
(N � 1)na, denoted by ARMA(Nna; nb+Le+ (N � 1)na).
Therefore, it follows from (3-16) thatHH

0 vs(k) is zero-mean
white if L � nb+Le+(N�1)na. Moreover, since vs(k) is ob-
tained by causal �ltering ofw(k), it follows thatHH

0 vs(k) =P
1

i=0
Piw(k�i) whereM�M P(z) =

P
1

i=0
Piz

�i is stable

satisfying P(ej!)PH(ej!) = IM 8! (allpass). Therefore, we
have EfHH

0 vs(k+�)wH(k)g = P� for � � 0, and using (3-
13), we have EfHH

0 vs(k+ �)wH(k)g = HH

0 Rvsvs(�)F0s =
0 (by construction ofH0) for � � 1. Thus P� = 0 for � � 1.
Therefore, we have

HH

0 vs(k) = P0w(k) such that �(P0) =M: (3� 19)

By (3-11) and (3-19), we have

HH

0 Ga(z)y(k) = P0w(k) +HH

0 Ga(z)n(k) 3 �(P0) = M:
(3� 20)

Since P0UU
HPH0 = P0P

H

0 for any unitary matrix U, one
can not uniquely determine P0 from (3-20) given second-
order statistics of data y(k), and knowledge (estimates) of
H0, �lter Ga(z) and noise variance �2n [13]. One has to
exploit higher-order statistics (HOS) of data. The model
(3-20) is an instantaneous mixture model [13], therefore,
any existing method may be applied to estimate P0 given
(3-20). In this paper we have used the joint diagonalization
procedure of [13]. The required estimate of P0 is obtained
as

P0 =W�1U (3� 21)

where W \diagonalizes" HH
0 Rvsvs(0)H0 into an identity

matrix and U is a unitary matrix obtained via the joint
diagonalization procedure of [13] using fourth-order cumu-
lants of WHH

0 Ga(z)y(k). Let li (i = 1; 2; � � � ;M) denote
the orthonormal eigenvectors of HH

0 Rvsvs(0)H0 with the

corresponding eigenvalues i's. Set L = [l1
... � � �

... lM ] and
� = diag (1; � � � ; M). Then

W = ��1=2LH (3� 22)

diagonalizes HH

0 Rvsvs(0)H0 to an identity matrix:

W
�
HH

0 Rvsvs(0)H0

�
WH = IM . Finally, we have

H
H

0 vs(k) =: w(k) where H0 = H0W
HU: (3� 23)

Remark 1. Using (3-11) and (3-23) it follows

that H
H

0

�PLe
i=0

Gais(k � i)
�
= w(k): The �lter H

H

0 Ga(z)
whitens the noise-free received signal. Moreover, the deriva-

tion of this �lter was based upon whitening ofH
H

0 Ga(z)s(k).
These considerations motivate the name a whitening ap-
proach for the proposed technique. Our approach is far
more structured and di�erent than that of [12]. 2

3.2. MMSE Equalizer with Delay d

Using the orthogonality principle, the MMSE equalizer of
length Le + 1 to estimate w(k � d) (d � 0) based upon
y(n); n = k; k� 1; � � � ; k � Le, satis�es�

Gd;0 Gd;1 � � � Gd;Le

�
=�

FHd FHd�1 � � � FH0 0 � � � 0
�
R�1yyLe: (3� 24)

Clearly one can obtain a consistent estimate of RyyLe from
the given data. It remains to estimate Fl's to complete the
design. Here the discussion of Sec. 3.1 becomes relevant.
From (3-11) and (3-23) we have

H
H

0 vs(n) =

LeX
i=0

H
H

0 Gais(n� i): (3� 25)

Using (3-25) and taking expectations we have

Efs(n)vHs (n� �)gH0 =

LeX
i=0

Rss(� + i)GH

aiH0: (3� 26)

Using (1-1), (1-2) and (3-23) we have

Efs(n)vHs (n� �)gH0 = F� : (3� 27)

Hence, we have from (3-26) and (3-27)

FH� = H
H

0

LeX
i=0

GaiR
H

ss(� + i): (3� 28)

Substitute the results of (3-28) for � = 0; 1; � � � ; d in (3-24)
to complete the design. The MMSE estimate bw(t � d) of

w(t� d) is then given by bw(t� d) =
PLe

i=0
Gd;iy(t� i).

4. COMMON MINIMUM-PHASE ZEROS

Here the MIMO transfer function is

F(z) = A�1(z)B(z)Bc(z); Bc(z) =

nbcX
i=0

Bciz
�i

(4� 1)
where B(z) satis�es (H2) and Bc(z) is a �nite-degree M�M
polynomial that collects all the common zeros/factors of the
subchannels. Assume that



(H6) Given model (4-1), det(Bc(z)) 6= 0 for jzj � 1.

Then while A�1(z)B(z) has a �nite left-inverse, B�1c (z) is
IIR though causal under (H6). Then (3-2) holds true ap-
proximately for \large" Le, the approximation getting bet-
ter with increasing Le. Similarly Lemmas 1 and 2 hold true
approximately for \large" K and Lemma 3 also holds true
approximately for Le � K. Note also that �(F0) = M
where F0 = B0Bc0 since, by (H6), �(Bc0) = M (evalu-
ate det(Bc(z)) at z = 1). It is then readily seen that the
developments of Sec. 3 apply to the current case also.
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Fig. 1. Normalized MSE and probability of symbol de-
tection error Pe for the two users after MMSE equalization
with d = 3. Record length T = 500 symbols for equalizer de-
sign. Averages over 100 Monte Carlo runs. The designed
equalizer was applied to record lengths of 3000 symbols for
performance evaluation.

5. SIMULATION EXAMPLE

We consider a wireless communications scenario with two
(M = 2) 4-QAM user signals arriving at a uniform lin-
ear array (half-wavelength spacing) of N = 4 sensors via a
frequency selective multipath channel. The signaling pulse
shape for both the users was a raised-cosine pulse with a
roll-o� factor of 0.2, the pulse being truncated to a length of
4Ts where Ts = symbol duration. The array measurements
are assumed to be sampled at baud rate with sampling in-
terval Ts seconds and the two sources have the same baud
rate. The relative time delay � (relative to the �rst arrival),
the angle of arrival � (in degrees w.r.t. the array broadside)
and the relative attenuation factor (amplitude) �, (�; �; �),

for the two sources were selected as:

w1 : (0Ts; 40
�
; 1:0); (0:3Ts; 20

�
; 1:0); (0:6Ts;�20

�
; 1:0)

w2 : (0Ts; 10
�
; 1:0); (1:1Ts;�15

�
; 1:0); (1:6Ts;�1

�
; 1:0):
(5� 1)

Sampling of received signal at the array leads to a discrete-
time MIMO FIR model B(z) with N = 4, M = 2 and
nb = 4 such that B0 6= 0 and B4 6= 0 (see Sec. 1). The
e�ective MIMO channel was taken to be

F(z) = B(z)Bc(z) where Bc(z) = (1� 0:5z�1)I2:
(5� 2)

The part Bc(z) in (5-2) may represent some �ltering at the
transmitter or receiver, and it leads to a system with com-
mon zeros in the two subchannels.
An MMSE equalizer of length Le = 7 (8 taps per sub-

channel, totaling 32 taps) was designed with a delay d =3
for each of the two sources. Fig. 1 shows the results of sim-
ulations for a record length of T =500 symbols. It is seen
that the proposed approach works quite well. Also pres-
ence of a common (minimum-phase) zero has not caused
any problems.
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