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ABSTRACT

Blind equalization of MIMO (multiple-input multi-
ple-output) communications channels is considered using
primarily the second-order statistics of the data. In several
applications the underlying equivalent discrete-time math-
ematical model is that of a MIMO linear system where
the number of inputs equals the number of users (sources)
and the number of outputs is related to the number of
sensors and the sampling rate. Recently we investigated
the structure of multi-step linear predictors for IIR/FIR
MIMO systems with irreducible transfer functions and de-
rived an upper bound on its length (Tugnait, 1998 IEEE
DSP Workshop). In past multi-step linear predictors have
been considered in the literature only for single-input mul-
tiple-output models. In this paper we apply the results of
(Tugnait, 1998 IEEE DSP Workshop) for blind equalization
of MIMO channels using MMSE linear equalizers. Exten-
sions to the case where the \subchannel" transfer functions
have common zeros/factors is also investigated. An illus-
trative simulation example is provided

1. INTRODUCTION

Consider a discrete-time IIR MIMO system with N outputs
and M inputs:

y(k) = F(z)w(k) + n(k) = s(k) + n(k) (1)

where y(k) = [y1(k)
... y2(k)

... � � �
...yN(k)]

T , similarly forw(k),
s(k) and n(k), z is the Z�transform variable as well as the
backward-shift operator (i.e., z�1w(k) = w(k � 1), etc.),
s(k) is the noise-free output, n(k) is the additive measure-
ment noise and the N �M matrix F(z) is given by

F(z) = A�1(z)B(z);

A(z) = I +

naX
i=1

Aiz
�i and B(z) =

nbX
i=0

Biz
�i
: (2)

We allow all of the above variables to be complex-valued.
The following assumptions are made regarding (1)-(2):

(H1) N > M .

(H2) RankfB(z)g = M 8z including z =1 but exclud-
ing z = 0, i.e., B(z) is irreducible [5, Sec. 6.3].

(H3) Input sequence fw(k)g is zero-mean, spatially in-
dependent and temporally i.i.d. with each of its
components having non-zero fourth cumulants.
Take Efw(k)wH(k)g = IM where IM is theM�M
identity matrix and the superscript H is the Her-
mitian operation.

(H4) fn(k)g is zero-mean Gaussian with Efn(k +
�)nH(k)g = �2nIN�(�).

(H5) det(A(z)) 6= 0 for jzj � 1.
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Notations and De�nitions: Let B(l)(z) denote the

l�th column of B(z) such that B(l)(z) =
PLl

i=0B
(l)
i z�i

where Ll = deg
�B(l)(z)� = lowest degree of the polynomial

B(l)(z). By (2), Ll � nb 8l. The polynomial matrix B(z) is
said to be column-reduced if rank

�
[B(1)

L1

... � � �
...B(M)

LM
]

�
= M

[5]. Consider the Hilbert space H of square integrable
complex random variables on a common probability space
endowed with the inner product (for scaler complex ran-
dom variables x1 and x2) < x1; x2 >= Efx1x�2g where the
superscript � denotes complex conjugation (see [4]). Let
Spfxi 2 Ig denote the subspace of H generated by the
random variables/vectors in the set fxi 2 Ig. Given an
N�variate s(k) with i�th component si(k), de�ne the sub-
space

Hk�m;L1;L2 ;���;LN (s) :=

Spf si(k� li); m � li � Li; i = 1; 2; � � � ;Ng:
We will use Hk�m(s) to denote Hk�m;1;���;1(s). Let
(s(k)jHk�1(s)) denote the orthogonal projection of s(k)
onto the subspace Hk�1(s) [4]. 2

Models such as (1)-(2) with F(z) = B(z) arise in several
useful digital communications and other applications [1]-
[3], [6],[7] where one of the objectives is to estimate the
multichannel impulse response fBig and/or to recover the
inputs w(k) given the noisy measurements but not given
the knowledge of the system transfer function. One of the
popular approaches is that using linear prediction [1]-[3]
where existence of �nite-length one-step linear predictors
plays a key role. In the MIMO case it is known that under
(H1)-(H3), �nite-length one-step linear predictors exist for
the process s(k) [6]. The length (or an upper-bound on it)
has not been speci�ed in [6]. Under an additional condition
that B(z) is column-reduced, it is stated in [1] that there
exists a linear predictor (for s(k)) of length no longer thanPM

i=1
Li.

A one-step linear prediction-based approach was �rst pro-
posed in [9] and later expanded upon in [2]. Unlike the
subspace-based methods of [10], [11] and others, the lin-
ear prediction (LP) based approach of [9] and [2] turns out
to be rather insensitive to the order of the underlying FIR
channel (so long as one over�ts). More recently, it has been
pointed out in [12] and [13] that the LP-based approach
can be further signi�cantly improved by utilizing some ad-
ditional information not exploited by LP. In this paper we
will follow the approach of [13] which is based upon multi-
step linear prediction. Unlike [13] we allow multiple inputs
and IIR channels. Unlike [12] we allow MIMO transfer func-
tions that are not column-reduced and we also allow IIR
channels.

2. BLIND EQUALIZATION

2.1. Finite-Length Multi-Step Predictors

Here we �rst summarize the results of [14] in Theorem 1.
Let

F(z) =

1X
i=0

Fiz
�i
: (3)



It has been shown in [14] that using s(k) = F(z)w(k), we
obtain for appropriate choices of Ali's and Bli's (l � 1)

s(k) = �
na+l�1X
i=l

Alis(k � i) +

nb+l�1X
i=0

Bliw(k� i) (4)

such that
Bli = Fi for 0 � i � l� 1: (5)

Let us rewrite (4) as

s(k) = e(kjk� l) +bs(kjk � l); (6)

e(kjk� l) :=

l�1X
i=0

Bliw(k� i) =

l�1X
i=0

Fiw(k� i); (7)

bs(kjk� l) := �
na+l�1X
i=l

Alis(k� i)+

nb+l�1X
i=l

Bliw(k� i): (8)

Theorem 1 [14]. Under (H1)-(H3), (H5), and for
l = 1; 2; � � �, fs(k)g can be decomposed as in (6) such that

Efe(kjk � l)sH (k�m)g = 0 8m � l; (9)

bs(kjk� l) = (s(k)jHk�l(s)) ; (10)bs(kjk� l) 2 Hk�l;na+Mnb+l�1;��� ;na+Mnb+l�1(s) (11)

and bs(kjk � l)

= (s(k)jHk�l;na+Mnb+l�1;���;na+Mnb+l�1(s)) � (12)

It follows from Theorem 1 that

bs(kjk� l) =

PlX
i=l

Alis(k� i) where Pl � na+Mnb+ l� 1;

(13)
for some N �N matrices Alis. By (6) and (9) (recall also
the orthogonal projection theorem), we have

bs(kjk� l) = arg
�
minx(k)2Hk�l(s)Efks(k)� x(k)k2	 :

(14)
Therefore, bs(kjk�l) is the l�step (ahead) linear predictor of
s(k) given fs(m); m � k� lg. By (12) it is also the l�step
(ahead) linear predictor of s(k) given fs(m); k�Pl � m �
k � lg. Using (6) and (13) we have

s(k) =

PlX
i=l

A
(l)
i s(k � i) + e(kjk � l): (15)

By (9) and (15), for m � l,

Efs(k)sH (k�m)g =

PlX
i=l

A
(l)
i Efs(k�i)sH (k�m)g: (16)

By the orthogonal projection theorem and (12), it is suf-
�cient to consider (16) for m = l; l + 1; � � � ; Pl in order to

solve for A(l)
i s. Using these values of m in (16) we may

write�
A

(l)
l

� � � A
(l)
Pl

�Rss(Pl�l) = [ Rss(l) � � � Rss(Pl) ]

(17)
where RssL denotes a [N(L+ 1)]� [N(L+1)] matrix with
its ij-th block element as Rss(j�i) = Efs(k+j�i)sH (k)g.

Note that Rss(Pl�l) is not necessarily full rank, therefore,

the coe�cients A(l)
i s are not necessarily unique. A mini-

mum norm solution to (17) may be obtained as�
A

(l)
l � � � A

(l)
Pl

�
= [ Rss(l) � � � Rss(Pl) ]R#

ss(Pl�l)

(18)
where the superscript # denotes the pseudoinverse.

2.2. Estimation of Noise Variance

In a fashion similar to RssL in (17), let RyyL denote a
[N(L+1)]� [N(L+1)] matrix with its ij-th block element
as Ryy(j�i) = Efy(k+j�i)yH(k)g; de�ne similarly RnnL

pertaining to the additive noise. Carry out an eigendecom-
position of RyyP1 . Then the smallest N �M eigenvalues
of RyyP1 equal �

2
n [14]. Therefore, a consistent estimate b�2n

of �2n is obtained by taking it as the average of the small-

est N �M eigenvalues of bRyyP1 , the data-based consistent
estimate of RyyP1. We will need the estimate of noise vari-

ance later to calculate R#
ss(Pl�l)

in (18) for various l � 1.

By (13), Pl � l � na + Mnb � 1, independent of l. This
suggests that we keep

Pl � l = L � na +Mnb � 1 (8 l): (19)

Then under (H3) and (H4),

R
ssL

= R
yyL

�R
nnL

= R
yyL

� �
2
nIN(L+1): (20)

Thus, R
ssL

can be estimated from noisy data.

2.3. MMSE Equalizer with Delay d

We wish to design an MMSE (minimum mean-square error)
linear equalizer of a speci�ed length. Using the orthogo-
nality principle [4], it follows that the MMSE equalizer of
length Le + 1 to estimate w(k � d) (d � 0) based upon
y(n); n = k; k� 1; � � � ; k � Le, satis�es�

Gd;0 Gd;1 � � � Gd;Le

�
=�

FHd FHd�1 � � � FH0 0 � � � 0
�
R�1
yyLe

(21)

The equalized output is given by

bw(k � d) =

LeX
i=0

Gd;iy(k� i): (22)

Clearly one can obtain a consistent estimate of RyyLe from
the given data. It remains to estimate Fl's to complete
the design. This is where the multistep predictor approach
turns out to be useful.

2.4. Partial Channel Identi�cation

As noted in Sec. 2.3, we need estimates of Fi for i =
0; 1; � � � ; d. We now show how Sec. 2.1 may be exploited
for this purpose. Let

eL = L+ d + 1 (23)

where L is as in (19). Rewrite (15) as

e(kjk � l) =

eLX
i=0

A
(l)
i s(k � i) (24)

where

A
(l)
i =

8><
>:

IN for i = 0
0 for 1 � i � l � 1

�A(l)
i for l � i � L+ l

0 for L + l + 1 � i � eL :
(25)



By (19) Pl = L+ l, therefore, for each l, we estimate L+1
coe�cients in (18). For l � 2, de�ne

el(k) := e(kjk�l)�e(kjk�l+1) =
eLX
i=0

D
(l;l�1)
i s(k�i) (26)

where

D
(l;l�1)
i := A

(l)
i �A

(l�1)
i ; i = 0; 1; � � � ; eL: (27)

By (25), D(l;l�1)
0 = 0 8l � 2.

Consider the [N(d+ 1)]�vector

E(k) :=

�
e
T
d+1(k + d)

... � � �
... eT2 (k + 1)

... eT (kjk� 1)

�T
:

(28)
Using (24)-(28) we have

E(k) = DS(k) (29)

where

S(k) :=

�
sT (k+ d� 1)

... sT (k + d� 2)
... � � �

... sT (k� eL) �T
(30)

is a [N(eL+d)]�column vector and D is a [N(d+1)]�[N(eL+
d)] matrix composed of D

(:;:)
i s and A

(1)
i s. Using (7), (26)

and (28), we have

E(k) =
�
FTd FTd�1 � � � FT0

�T
w(k) =: eFw(k): (31)

By (29), (31) and (H3), it follows that

REE(0) = EfE(k)EH(k)g = eFeFH = DR
ss(eL+d)DH (32)

Since eFeFH = eFUUHeFH for any unitary U, one can not

uniquely determine eF from (32); one needs to exploit the

higher-order statistics of the data [8]. Clearly rank(eFeFH) =
M . Calculate REE(0) as

REE(0) = D
h
R
yy(eL+d�1) � �

2
nIN(eL+d)iDH

: (33)

Carry out an eigendecomposition of REE (0). Let li (i =
1; 2; � � � ;M) denote the orthonormal eigenvectors ofREE (0)
corresponding to the M largest eigenvalues 
i's. Set L =�
l1
... � � �

... lM

�
and � = diag

�p

1; � � � ;p
M

�
. Set H = L�.

Then HHH = eFeFH. De�ne z(k) = H#E(k) where H# =
��1LH. Apply the joint diagonalization procedure of [8] to
estimate the unitary matrix U exploiting the fourth-order
cumulants of z(k) (at zero lag). Then

F = HU: (34)

2.5. Practical Implementation

Given data y(k); k = 1; 2; � � � ; T . Pick the length Le + 1
and delay d of the MMSE equalizer. (By Theorem 1 Le

should satisfy Le � na + Mnb. ) Let L = Le in (19).
The following steps are executed to implement a practical
algorithm based on the earlier discussion in Secs. 2.1{2.4.
ALGORITHM I: Multistep Linear Predictors-

Based Blind equalizer { MSLP Estimate all data-based

correlations by sample averaging. Estimate noisefree corre-
lations via (20). Use the steps in Sec. 2.4 to estimate Fi
for i = 0; 1; � � � ; d. Using these estimated values, implement
the MMSE equalizer via (21) and (22).
ALGORITHM II: Linear Predictor-Based Blind

equalizer { LP Here we will use (21) with Fi (i =
0; 1; � � � ; d) estimated using the basic approach of [1] which
utilizes one-step ahead linear predictors (l = 1). Although
[1] derives all its results under the assumption of FIR
column-reduced irreducible channels, its results extend to
models that satisfy (H1)-(H5) by virtue of Theorem 1.

3. COMMON MINIMUM-PHASE ZEROS

Here the MIMO transfer function is

F(z) = A�1(z)B(z)Bc(z); Bc(z) =

nbcX
i=0

Bciz
�i (35)

where B(z) satis�es (H2) and Bc(z) is a �nite-degree M�M
polynomial that collects all the common zeros/factors of the
subchannels. Assume that

(H6) Given model (35), det(Bc(z)) 6= 0 for jzj � 1.

Then while A�1(z)B(z) has a �nite left-inverse [14, Thm.
2], B�1c (z) is IIR though causal under (H6). Therefore, we
have (for 0 < � <1 and 0 < � < 1)

w(k) =

1X
i=0

G
0

is(k � i) where kG0

ik � ��
jij 8 i: (36)

Consider (6) with e(kjk � l) as in (7) but

bs(kjk� l) :=

1X
i=l

Fiw(k� i): (37)

Using (36) and (37) we have (for 0 < �1 <1 and 0 < �1 <
1)

bs(kjk� l) =

1X
n=l

Cns(k � n) where kCnk � �1�
jnj
1 8 n:

(38)
Mimicking Theorem 1, we have the following result.
Theorem 2. With F(z) obeying (35), under (H1)-(H3),
(H5), (H6) and for l = 1; 2; � � �, fs(k)g can be decomposed
as in (6), (7) and (37) such that (9) and (10) hold true.
Furthermore, let bs(kjk � l; k � Q) := (s(k)jHk�l;Q;���;Q(s))
and e(kjk � l; k�Q) := s(k)�bs(kjk � l; k �Q). Then

lim
Q!1

Efke(kjk � l)� e(kjk� l; k�Q)k2g = 0 � (39)

Proof: The �rst part follows as in Theorem 1. It follows
from [4, Chapter 1, Lemma 3.1.b] that

lim
Q!1

Efkbs(kjk� l)�bs(kjk� l; k �Q)k2g = 0: (40)

Then (39) is immediate. 2

Theorem 2 clearly implies that for Q `large enough,' we
can obtain e(kjk � l; k � Q) close enough to e(kjk � l).
Therefore, the approach of Sec. 2 becomes applicable to
the current case.
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Fig. 1. Normalized MSE and probability of symbol de-
tection error Pe for the two users after MMSE equalization
with d = 3. Record length T = 500 symbols for equalizer de-
sign. Averages over 100 Monte Carlo runs. The designed
equalizer was applied to record lengths of 3000 symbols for
performance evaluation.

4. SIMULATION EXAMPLE

We consider a wireless communications scenario with two
(M = 2) 4-QAM user signals arriving at a uniform lin-
ear array (half-wavelength spacing) of N = 4 sensors via a
frequency selective multipath channel. The signaling pulse
shape for both the users was a raised-cosine pulse with a
roll-o� factor of 0.2, the pulse being truncated to a length of
4Ts where Ts = symbol duration. The array measurements
are assumed to be sampled at baud rate with sampling in-
terval Ts seconds and the two sources have the same baud
rate. The relative time delay � (relative to the �rst arrival),
the angle of arrival � (in degrees w.r.t. the array broadside)
and the relative attenuation factor (amplitude) �, (�; �; �),
for the two sources were selected as:

w1 : (0Ts; 40
�
; 1:0); (0:3Ts; 20

�
; 1:0); (0:6Ts;�20�; 1:0)

w2 : (0Ts; 10
�
; 1:0); (1:1Ts;�15�; 1:0); (1:6Ts;�1�; 1:0):

(41)
Sampling of received signal at the array leads to a discrete-
time MIMO FIR model B(z) with N = 4, M = 2 and
nb = 4 such that B0 6= 0 and B4 6= 0 (see Sec. 1). The
e�ective MIMO channel was taken to be

F(z) = B(z)Bc(z) where Bc(z) = (1� 0:5z�1)I2: (42)

The part Bc(z) in (42) may represent some �ltering at the
transmitter or receiver, and it leads to a system with com-
mon zeros in the two subchannels.
An MMSE equalizer of length Le = 9 (10 taps per sub-

channel, totaling 32 taps) was designed with a delay d =3
for each of the two sources. In order to apply algorithms
MSLP and LP, we picked L = Le = 9. Fig. 1 shows the re-
sults of simulations for a record length of T =500 symbols.
It is seen that the MSLP approach outperforms the LP ap-
proach for user 1 whereas their performances are compara-
ble for user 2. Also presence of a common (minimum-phase)
zero has not caused any problems.
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