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ABSTRACT

The paper considers the adaptive identification of bi-
linear systems using the equation-error approach. An im-
proved least squares (ILS) objective function is presented
to reduce the bias of coefficient estimation in the case of
large measurement noise when the standard least squares
(LS) technique is used. An adaptive algorithm based on the
ILS criterion is proposed for the identification of the bilin-
ear system. Numerical simulations are given to demonstrate
the effectiveness of the adaptive ILS algorithm. Compared
with the least mean square (LMS) technique, the proposed
algorithm has superior identification performance.

1. INTRODUCTION

System identification is an important issue in many areas
including digital signal processing [1], process control [2]
and communications [3]. It is concerned with characteriz-
ing an unknown system using measurements of the system’s
input and output signals. Linear system models have played
a very crucial role in the development of various signal pro-
cessing. But many real-life systems show nonlinear behavior
[4]. As a result, it is important to consider nonlinear mod-
els in order to accurately characterize real-life phenomena.
For example, high-speed wireless communication channels
often need nonlinear equalizer for acceptable performance
[5]. One particularly attractive model for nonlinear system
identification is the bilinear model, which can characterize
a wide class of nonlinear phenomena [6].

There are two different approaches to solve adaptive
identification problems using the bilinear system model —
equation-error and output-error approaches [9]. The mean
square estimation error surface in the equation-error ap-
proach has a unique minimum. However, the recursive
model leads to correlated residuals and thus biased coef-
ficient estimations when the conventional least squares esti-
mation technique is used. The output-error approach maybe
less sensitive to additive noise in the desired signal than the
equation-error approach. However, its error surface may

have local minima and the adaptive identification may not
converge to the global minimum, unless the system is ini-
tialized properly. The latter approach has been addressed by
many researchers [7],[8].

In this paper, we consider the equation-error approach
and introduce an improved objective function to replace the
least squares (LS) function. While the LS criterion is to
minimize the one-step-prediction error, the improved least
squares (ILS) technique is to minimize the orthogonal Eu-
clidean distance between every noisy output point and the
hyper-surface defined by the bilinear system. The ILS tech-
nique can estimate the coefficients with a strongly reduced
bias in the case of large amplitude measurement noise. An
adaptive scheme based on the ILS criterion is then devel-
oped. Computer simulations are used to compare the per-
formance of the proposed adaptive algorithm with that of
the least mean squares (LMS) algorithm.

2. BILINEAR SYSTEM IDENTIFICATION

In this paper, we consider a bilinear system whose input-
output relationship is governed by

x(n) =
NX
i=1

a1;ix(n� i) +
N�1X
j=0

a2;ju(n� j)

+
NX
i=1

N�1X
j=0

bi;jx(n� i)u(n � j); (1)

and the measurement equation

y(n) = x(n) + e(n); (2)

where
u(n) input signal
x(n) output signal
y(n) measurement signal
e(n) zero mean Gaussian white noise
a1;i; a2;i; bi;j coefficients

Using vector notation, we can rewrite (1) as

x(n) = w
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T
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The basic idea of equation-error approach is to use sam-
ples of the input signal u(n) and the measurement signal
y(n) to obtain an adaptive identification system as

x̂(n) = ŵ
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2u(n); (4)

where
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a1;i(n); a2;i(n), and bi;j(n) (1 � i � N; 0 � j � N � 1)
are coefficients of the adaptive bilinear system at time n.

The conventional identification method considers the LS
criterion

V (ŵ1(n); ŵ2) = E[(y(n) � x̂(n))2]; (5)

where E denotes mathematical expectation. A stochastic
gradient update equation for minimizing the mean square
estimation error V (ŵ1(n); ŵ2) is

a1;i(n+ 1) = a1;i(n) + �1;i"(n)y(n � i);

a2;j(n+ 1) = a2;j(n) + �2;j"(n)u(n � i); (6)

bi;j(n+ 1) = bi;j(n) + �i;j"(n)y(n � i)u(n � j);

i = 1; 2; � � � ; N and j = 0; 1; � � � ; N � 1;

where "(n) = y(n) � x̂(n), �1;i, �1;j, and �i;j are small
positive constants (stepsize) that control stability and rate of

convergence of the adaptive algorithm. (6) is the conven-
tional adaptive identification method — LMS algorithm.

Note that the LS technique seeks to minimize the mean
squares regression for y(n) with respect to plane (y(n �
1); u(n)). If y(n) contains noise, the statistics of the input
signal to the adaptive identification system will be biased
from the statistics of the ideal desired response signal and
this will result in biased estimations [10]. One appropriate
minimization objective function to tackle the problem is
given by

Vb(w1(n);w2) = E[d2(n)]; (7)

d2(n) = min
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(y(n) �wT
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T
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2]; (8)

where k � k denotes L2 norm. The objective function rep-
resents a minimization of the orthogonal Euclidean distance
between every noisy point (y(n); y(n� 1)) and the hyper-
surface defined by (1).

Through derivation, it is known that when the vector
x(n� 1) is chosen as
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w1(n)(y(n) �wT
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1 +w

T
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; (9)

the term in the bracket of (8) reaches its minimum, and
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The objective function in (7) can be written as
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Similar to the LMS technique, an updating algorithm for
the coefficients a1;i, a2;i, and bi;j (1 � i � N; 0 � j �
N � 1), which attempts to minimize the objective function
in (11), can be obtained by applying the stochastic gradient
method

a1;i(n + 1) = a1;i(n)�
�1;i

2
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2
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i = 1; 2; � � � ; N and j = 0; 1; � � � ; N � 1;

where
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T
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Then an adaptive algorithm (12) is obtained to identify
the coefficients of the bilinear system based on the new
objective function ( 11). For simplicity, ( 12) is called as
adaptive ILS algorithm.



3. COMPUTER SIMULATIONS

In this section, we present some simulation results com-
paring the performance of the adaptive ILS algorithm with
that of the LMS algorithm. The problem considered here
is to estimate the coefficients of a bilinear system, which is
governed by the following equation

x(n) = 1:5x(n� 1) � 0:7x(n� 2) + 0:8u(n)

+0:5u(n� 1) + 0:24x(n� 1)u(n);

y(n) = x(n) + e(n):

Assume that the input signal u(n) belongs to a stationary
and zero-mean white Gaussian process with variance 0.02.
The measurement noise is also a Gaussian process N (0; �2

e).
�2
e is a constant for varying SNR.

The adaptive ILS algorithm and the LMS algorithm are
used to estimate the coefficients in the above bilinear system.
In our study, the bias and standard derivation (STD) of the
estimated coefficients are ensemble averages over 50 Monte
Carlo trials, in which the estimation error is measured by
the time-averaging in the range [10001; 20000]. For sim-
plicity, we assume the stepsizes corresponding to different
coefficients are the same. That is, �1;i = �2;j = �i;j, for
i = 1; 2; � � � ; N and j = 0; 2; � � � ; N � 1 in (6) and (12).

Table 1 presents the performance of the two identifi-
cation algorithms with different stepsizes as SNR=20dB.
When the stepsize is chosen as 5 � 10�2, the LMS algo-
rithm diverges, and the corresponding results are not given.
It is noted that the LMS algorithm produces a substantial
estimation bias, and the adaptive ILS algorithm can largely
reduce it. The improvement degrees are different depending
on coefficients. Compared with the LMS method, while it
reduces the estimation bias twice for coefficients a20 and
b10, the adaptive ILS algorithm reduce the bias about one
hundred times for coefficients a11, a12 and a21. The choice
of stepsize affects the performance of the adaptive identifi-
cation system. The small stepsize results in small bias and
STD. However, the convergence time becomes long in this
case. When stepsizes in the adaptive ILS algorithm and in
the LMS algorithm are chosen as 5 � 10�3 and 10�2, re-
spectively, both have the same convergence time. Figure
1 gives an example to illustrate the evolution of adaptive
identification coefficients.

We also evaluate the performance of the adaptive ILS
algorithm and the LMS algorithm with different SNR and
present the result in Figure 2. To make a reasonable compar-
ison, we choose the stepsizes as 5 � 10�3 (LMS) and 10�2

(ILS) to let their convergence times approximately equal.
From the figure, it is observed that the bias and the STD of
the estimated coefficients via the adaptive ILS algorithm are
generally smaller that those via the LMS algorithm, espe-
cially the estimation bias. When SNR is high, the superiority
of the adaptive ILS algorithm to the LMS algorithm is not so

much obvious for some coefficients, even the performance
of the former is worse than that of the latter. When SNR is
low, the adaptive ILS algorithm apparently outperforms the
LMS method.

4. CONCLUSIONS

Bilinear models represent a class of nonlinear recursive sys-
tems and have been used in a variety of applications. How-
ever, the identification performance of the bilinear model
can be limited in practice when conventional least squares
techniques are used, as this leads to biased coefficient es-
timations. In this paper, a new algorithm called adaptive
ILS algorithm is developed to estimate the coefficients of
the bilinear systems. Compared with the LMS algorithm,
the proposed algorithm can strongly reduce the estimation
bias when large amplitude measurement noise exists and has
superior identification performance.
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Table 1: Bias, Standard Derivation (STD) and Convergence Time (T) of Estimated Coefficients in the Bilinear System.

stepsize=5 �10�3 stepsize=10�2 stepsize=5 �10�2

Parameter Method Bias STD T Bias STD T Bias STD T
a11 LMS 0.1309 0.0119 2100 0.1351 0.0217 1200

(1.5) ILS 0.0009 0.0021 5800 0.0012 0.0039 2800 0.0315 0.0681 600
a12 LMS 0.1195 0.0117 3900 0.1198 0.0223 1800

(-0.7) ILS 0.0001 0.0016 9000 0.0005 0.0040 4200 0.0280 0.0613 1500
a20 LMS 0.0031 0.0143 2000 0.0048 0.0158 800

(0.5) ILS 0.0049 0.0138 2400 0.0022 0.0114 2000 0.0054 0.0270 400
a21 LMS 0.1111 0.0163 1900 0.1131 0.0242 500

(0.8) ILS 0.0040 0.0045 2200 0.0072 0.0127 800 0.0184 0.0423 300
b10 LMS 0.0084 0.0171 1800 0.0094 0.0316 1000

(0.24) ILS 0.0009 0.0050 4800 0.0058 0.0126 2800 0.0192 0.0717 500
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Figure 1: Evolution of Coefficients in the Adaptive Bilinear System (— : ILS, � � � : LMS).
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Figure 2: Comparison of Bias and Standard Deviation Between the Adaptive ILS Algorithm and LMS Algorithm: (a) Bias;
(b) Standard Deviation (— : ILS, � � � : LMS; + : a11, � : a12, 2 : a20, � : a11, . : b10).


