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ABSTRACT

Conventional applications of matched-field processing (MFP) use
large aperture vertical arrays and low frequency signals. It is well
known that MFP’s sensitivity to environmental mismatch is pro-
portional to frequency. Thus, real-world application of MFP to
mid-frequency signals, e.g.,800� 3000 Hz, is generally regarded
a very difficult problem. Using small aperture vertical arrays can
also compromise the performance of MFP. However, small aper-
ture vertical arrays are more practical for real-world scenarios. In
this paper, we propose the broadbandL1-norm estimator for ro-
bust broadband matched-field localization of mid-frequency sig-
nals received on extremely small aperture vertical arrays. Results
using a simulated Gulf of Mexico environment for broadband sig-
nals (1000�3000 Hz) received on a 3-meter vertical array demon-
strate the significant performance gains in using theL1-norm es-
timator over the asymptotically-optimal maximuma posteriories-
timator in the presence of finite environmental sampling.

1. INTRODUCTION

Matched-field processing (MFP) has been shown to be an effec-
tive technique for source localization in shallow water, but it can
be extremely sensitive to errors in the assumed values of the envi-
ronmental parameters [1]. This sensitivity to environmental mis-
match is proportional to frequency. Thus, MFP is typically ap-
plied to low frequency signals, e.g.,< 300 Hz, where sensitivity
is smallest. Environmentally robust MFP algorithms have been
developed which are insensitive to certain levels of environmental
uncertainty [2]. However, these algorithms were also applied to
signals in the low-frequency range. Thus development of robust
MFP algorithms for mid-frequency signals, e.g.,800 � 3000 Hz,
is a largely unexplored topic.

Another issue in the application of MFP is array length and
density of elements. The perfect array for MFP is one that spans
the water column and is densely populated with elements. This
provides a complete sampling of the mode-functions which results
in low sidelobe levels on the range-depth ambiguity surface. How-
ever, in many applications the use of a long array is impractical
and short arrays must be considered. Because short arrays only
span a small segment of the water column, they generally under-
sample the mode-functions. This can result in large sidelobes on
the range-depth ambiguity surface computed at a single frequency.
Sidelobe height is inversely proportional to array length. Incoher-
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ently averaging ambiguity surfaces computed at multiple frequen-
cies across the signal band can help alleviate this problem to some
degree. Again, most of the robust MFP algorithms described in
the literature are demonstrated using long arrays with many sen-
sors. The application of robust MFP algorithms using a 23 meter,
5-element vertical array at frequencies of100 � 600 Hz in sim-
ulated environments with relatively small levels of uncertainty is
given in [3] and [4].

In this paper, we present an MFP algorithm that is robust to
moderate amounts of environmental uncertainty for the challeng-
ing problem of localization using mid-frequency signals received
on extremely short vertical-arrays. Previously we derived theL1-
norm estimator from the interpretation of the maximuma pos-
teriori (MAP) estimator as an exponentially-weighted averaging
processor [5], [6]. The MAP estimator is a statistically optimal
approach to robust source localization in the limit of infinite av-
eraging. With MAP, the uncertain environmental parameters are
treated as nuisance parameters and are averaged over in the process
of estimating source location. Simulated and experimental data re-
sults were presented in [6] using long vertical arrays and narrow-
band signals which demonstrated for finite averaging that theL1-
norm estimator provided superior localization performance over
that of MAP. We now apply a broadbandL1-norm estimator to
this new paradigm and illustrate why it is even better suited to the
solution of this problem than MAP. In support of these assertions,
we present realistic simulation results using signals in the band
of 1000 � 3000 Hz received on a 3-meter vertical array which
demonstrate the significant performance gains in using theL1-
norm estimator over MAP and the conventional Bartlett processor.

2. ALGORITHM DEVELOPMENT

2.1. Signal model

The signals from a point source received on a vertical array ofN
sensors can be expressed in vector form as

y(!) = s(!)a(!;�;	) + n(!) (1)

where the elements of the received data vectory(!) are the com-
ponents of the signal wavefront observed on the sensors located
at depthsz = [zr1 ; : : : ; z

r
N ]

T at radian frequency!. The scalar
s(!) is the complex signal amplitude at!. The signalreplica vec-
tor a(!;�;	) is the acoustic transfer function between a source at
location� = [r; z] and the array, while the vector	 contains the
values of the environmental parameters, i.e., sound-velocity pro-
file and bottom characteristics. The vectorn(!) contains samples
of complex, Gaussian noise.



2.2. BroadbandL1-norm estimator

A wideband MAP estimator was derived in [7]. If we assume that
the replica vectors are normalized to unit norm and that the noise
is white, we can express this MAP estimator as
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where�2a is the signal amplitude variance at the source, andp(	)
is the prior probability density function of the uncertain environ-
mental parameters which is assumed to be uniformly distributed.
The uncertainty bounds of the environmental parameters are de-
termined fromin situ measurements and historical data. Practical
application of (2) requires the integral to be approximated numer-
ically which results in

b� = argmax
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The integration is approximated by a summation overM realiza-
tions of the environmental parameters. Observe that the argument
of the exponential in (3) is the multi-frequency Bartlett processor

scaled by �2
a

2(�2
a
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. Thus (3) is simply an exponentially-weighted
average, overM realizations of the environment, of multi-frequency
Bartlett surfaces. If we assumey(!l) is also normalized to unit
norm, and� and 	i are perfectly matched to the data, then��aH(!l;�;	i)y(!l)

��2 would equal one. Any other values of�
and	i would result in a value between zero and one. Since a per-
fect match would be consistent over frequency, this would result

in the argument of the exponential equalingL�
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. Thus
the range of values for the argument of the exponential would be
zero toL

2
. Values of

��aH(!l;�;	i)y(!l)
��2 nearer to one, which

correspond tobetter replica-data matches, result in values of the
exponential argument closer toL

2
. Therefore with the non-linear

exponential weighting, multi-frequency Bartlett surfaces from en-
vironmental realizations	i which are better matches to the data
receive more relative weight in the averaging process.

The exact implementation of the MAP estimator in (2)in-
tegratesover environmental realizations, which is equivalent to
computing (3) with infinitesimally-spaced samples of the environ-
mental parameters, i.e.,M ! 1. Thus, the true environment
and realizations close to the true are all included in the averaging
process, which results in a clustering of reinforcing peaks in the
vicinity of the true value of�. However, due to processing time
and computational constraints only a finite number of environmen-
tal realizations can be used in practice. A reasonable number of
environmental realizations for practical application would be on
the order of100 � 200. Therefore, the practical implementation
of MAP in (3) can be suboptimal.

Finite sampling of the environmental parameter space results
in a smaller number of better replica-data matches. Therefore,
there is a reduced occurrence of the clustering of peaks in the
vicinity of the true source location� using the MAP estimator.
This increases the possibility of the true peak being averaged out
and obscured by sidelobes reinforced over the averaging process.
As we shall see, this is especially true for short arrays and mid-
frequency signals. As developed in [5] and [6] using narrow-
band signals, we can compensate for this by giving better replica-
data matches more relative weight in the averaging process. This

can be accomplished by replacing the exponential weighting in (3)
with a p-power weighting, i.e., replacingexpfxg by fxgp, which
results in essentially anLp norm over environment. In the limit
asp!1, the broadbandL1-norm estimator, given by
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simply finds the best match over source location� using theM re-
alizations of the environmental parameters. Since it is extremely
unlikely that the true values of the environmental parameters are
included in theM realizations, theL1-norm estimator of (4) in-
herently assumes that other combinations of the environmental pa-
rameters can produce accurate localization estimates.

In our previous work [5], [6], we showed that this assumption
is valid. It was observed that localization processing is most sensi-
tive to mismatch in the assumed values of the horizontal wavenum-
bers. The horizontal wavenumbers are a function of environment
and frequency, and comprise the phase of the replica vectors. Us-
ing a modal decomposition of the replica vectors, we showed that
the localization process is only dependent on the set of relative dif-
ferences between the wavenumbers for a given environment and
not their precise values. Thus, a combination of the environmen-
tal parameters generating a wavenumber set which produces a set
of wavenumber differences that is nearly identical to those for the
true environment will result in a nearly identical localization esti-
mate. We also introduced the concept of a wavenumber gradient
(WG) as a metric for quantifying the similarity of environmental
realizations. The WG is simply the gradient of the curve obtained
by connecting the wavenumbers for a particular environmental re-
alization by line segments. Curves with nearly identical gradi-
ents will have nearly identical relative wavenumber differences.
In simulation studies, we demonstrated that environmental real-
izations having nearly identical WG’s produced nearly identical
localization results. Recently we have observed that the WG is
consistent over frequency. That is, the error between the WG’s
for two given environmental realizations is relatively constant over
frequency. Thus, an environmental realization producing a nearly
correct localization estimate does so across all frequencies and is
positively reinforced by the frequency averaging of the broadband
L1-norm estimator. This is a topic of current investigation.

3. ISSUES RELATED TO SHORT ARRAYS AND
MID-FREQUENCY SIGNALS

In this section we will describe and demonstrate the effects of short
arrays and mid-frequency signals on MFP. The sensitivity of MFP
to environmental mismatch is greater using mid-frequency signals.
This is due to the fact that the main-lobe width of the peak of
the range-depth ambiguity surface is inversely proportional to fre-
quency. When mismatch is introduced, the peak of this surface
moves along the main lobe away from its apex when no mismatch
was present. Thus, good localization results are obtained pro-
vided the peak shifts to a point on the main lobe which is greater
than any of the sidelobes. Large localization errors occur once the
mismatch is large enough such that the peak shifts to a point away
from the main lobe. Because low frequency signals produce wider
main-lobe widths, the application of MFP using these signals can
tolerate larger amounts of environmental uncertainty.



0

500

1000

1500

2000

2500

3000

0

5

10

15

0

0.2

0.4

0.6

0.8

1

Singular Value Number

Normalized Singular Values of Modal Amplitude Matrix vs. Frequency

Frequency (Hz)

N
or

m
al

iz
ed

 A
m

pl
itu

de

Figure 1: Singular values of modal amplitude matrix vs. frequency.

However, we can show that MFP using short arrays is better
suited to mid-frequency signals. Using a modal representation,
the signal replica vector can be decomposed as the matrix-vector
product

a(!;�;	) = 
(!; z;	)�(!;�;	); (5)

where the columns of theN�Qmodal amplitude matrix
(!; z;	)
are theQ mode-functions sampled at the receiver depths and
�(!;�;	) is a vector of complex weights. All of the replica vec-
tors lie in the subspace generated by the columns of
(!; z;	).
When a very short array is used for MFP the modefunctions are
undersampled and
(!; z;	) can become rank deficient. This re-
duction in the dimensionality of the subspace results in increased
sidelobes on the range-depth ambiguity surface. In the limit as the
rank approaches one, all of the replica vectors become co-linear.
Thus, all of the hypothesized source locations� produce the same
estimator output resulting in a flat range-depth ambiguity surface.

To illustrate this point, we will demonstrate how the rank of

(!; z;	) changes with frequency using a small aperture verti-
cal array. In Figure 1, a plot of the singular values of
(!; z;	)
versus frequency for the shallow-water environment described in
Section 4 using a 3-meter vertical array with 16 equally spaced
elements is presented. The number of significant singular values
is equivalent to the rank of a matrix. Notice that at frequencies
below 500 Hz, the rank is nearly one. The rank increases beyond
one as the frequency increases above 500 Hz. The reason for this
is that as frequency is increased, more higher-order modes begin
to propagate. With such a short vertical aperture, the lower-order
modes appear as a constant amplitude across the array. These
higher-order modes, which produce increasingly greater numbers
of amplitude oscillations across the array, are responsible for in-
creasing the dimension of the subspace. When using a short array
for MFP, higher frequencies can provide better localization perfor-
mance provided a robust estimator is utilized.

We can demonstrate the combined effects of using a short
array with mid-frequency signals for MFP, again using the envi-
ronment described in Section 4. We will do this using the con-
ventional Bartlett processor in the presence of environmental mis-
match with a 95 meter and a 3-meter array. Each array contained
16 equally spaced elements. A noise-free data vector was gener-
ated for a fixed source location of 3000 m in range and 50 m in
depth using the nominal values of the environmental parameters
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Figure 2: Scatter plots of Bartlett peaks using a 95-meter array at
250 Hz (top) and 2500 Hz (bottom).

given in Table 1 at frequencies of 250 Hz and 2500 Hz. Wa-
ter depth was assumed to be the only uncertain environmental pa-
rameter. A set of 100 localization estimates were computed for
the arrays at both frequencies. In computing the 100 estimates
for each of the four configurations, the Bartlett processor assumed
100 unique, randomly selected water depths from the interval of
114�5 meters. In Figures 2 and 3, scatter plots of the peak outputs
of the Bartlett processor for the 100 trials in each of the configura-
tions are shown. Figure 2 shows the results for the 95-meter array.
At 250 Hz, most of the points are clustered about the true source
location, while at 2500 Hz there is a small amount of clustering
around the true source location. In contrast, Figure 3 shows the
results for the 3-meter array. We see that at 250 Hz there is very
little clustering and at 2500 Hz the points are distributed through-
out the search region. Therefore, the MAP estimator, which relies
on clustering for good performance, would have very little success
operating with a small aperture array in this scenario. Since the
L1-norm estimator simply finds the best overall match and is not
dependent on clustering, it is better suited to this problem.

4. SIMULATION RESULTS

The performance of the broadbandL1-norm estimator was com-
pared to that of the wideband MAP and Bartlett processors using a
realistic simulated environment modeled after a region in the Gulf
of Mexico [8]. This is a 3-layer shallow-water environment com-
prised of water over sediment over rock. An actual measured
sound-velocity profile (SVP) from the Gulf of Mexico was used in
the simulations. SVP uncertainty for the simulations was created
by modeling the SVP asc(z) = g'(z) + co(z), whereco(z) was
the actual measured SVP,'(z) was a perturbation vector, andg,
the uncertain component of the SVP, was a random variable uni-
formly distributed between0 and0:35. The six other environmen-
tal parameters assumed for this environment and their uncertainty
intervals are shown in Table 1. The receiving array consisted of
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Figure 3: Scatter plots of Bartlett peaks using a 3-meter array at
250 Hz (top) and 2500 Hz (bottom).

Parameter Uncertainty Interval
water depth 114� 5 m
sediment sound speed1600 � 37:5 m/s
rock sound speed 1625 � 37:5 m/s
sediment attenuation 0:5� 0:25 dB/�
sediment density 1:85 � 0:25
rock density 2:2� 0:25

Table 1: Ranges of environmental uncertainty for Gulf of Mexico
environment.

16 equally-spaced elements with a total aperture of 3 meters. The
top element of the array was located at a depth of 40 meters. The
estimators used 17 frequency components equally spaced across
the band of1000 � 3000 Hz in processing.

Localization performance was tested using 100 Monte Carlo
trials for signal-to-noise ratios (SNR) of -5 dB to 40 dB. The
range-depth search region was1000 � 6000 m in range and10 �
100 m in depth. The trials consisted of 100 synthesized data obser-
vations, each generated using a unique randomly selected source
location and environmental realization sampled from the uncer-
tainty intervals of the environmental parameters. The appropriate
level of zero-mean, Gaussian noise was then added to the data for
each SNR. TheL1 norm and MAP estimators processed the data
using an independent set ofM = 200 randomly selected envi-
ronmental realizations, while the Bartlett processor assumed the
nominal values of the environmental parameters. A correct local-
ization was defined as an estimate within a region of�300 m in
range and�4 m in depth of the true source location. Figure 4
presents the simulation results which show that theL1-norm es-
timator provides a significant performance improvement over that
of MAP and Bartlett. As discussed previously, the performance
of MAP suffers from the lack of clustering at these frequencies
with finite environment sampling. The dismal performance of
Bartlett stems from the narrow main-lobe widths produced at these
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Figure 4: Simulation results;L1 norm - x, MAP - o, Bartlett - +.

frequencies which provide little tolerence for mismatch combined
with the poor peak-to-sidelobe ratio for a 3-meter array.

5. CONCLUSION

This paper demonstrated that MFP with a very short array using
mid-frequency signals is feasible provided a robust estimator is
used. The broadbandL1-norm estimator was shown to be the
most effective processor for the solution to this problem as com-
pared to the MAP and Bartlett processors.
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