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ABSTRACT

Nonuniform �lter-banks (FB's) have traditionally been built
either by cascading uniform ones in a tree structure or by
direct design methods that lead to near-perfect reconstruc-
tion. However many theoretical issues remain unresolved.
This paper begins by pointing out a number of these is-
sues, and summarizes the known conditions for existence
of nonuniform perfect reconstruction (PR) FB's. As a new
contribution, we simplify some of these conditions and make
them more explicit. We provide examples that illustrate
some hitherto unobserved connections between these con-
ditions.

1. INTRODUCTION

A nonuniform �lter-bank (FB), shown in Fig. 1, is a FB in
which the channel decimation factors nk are not necessar-
ily equal (unlike a uniform FB where they must be equal).
This paper considers only maximally decimated FB's, i.e.
we assume

P
k

1
nk

= 1. Given such a set of positive in-

tegers nk, we can sometimes build a nonuniform FB with
nk as the decimation factors by cascading uniform FB's in
the form of a tree structure. This is schematically illus-
trated in Fig. 2 for the set f3; 3; 6; 6g. Such a FB would
hence be perfectly reconstructing (PR) if the cascaded uni-
form FB's were PR. One cannot always build nonuniform
FB's in this way. However if we allow the �lters in the FB
to be ideal (unrealizable) then we can always construct a
PR nonuniform FB. This is done by using ideal complex
brickwall analysis and synthesis �lters with bandwidths in-
versely proportional to the decimation factors, as shown
in Fig. 3. With realizable �lters, we can achieve approx-
imate or `near-perfect reconstruction' in several ways, as
is shown in [3, 4] and in references therein. A more gen-
eral situation where the decimators could be fractional has
been considered in [5]. However many theoretical issues in-
volved in obtaining exact reconstruction remain unresolved
even when the decimators are integers. (These issues do not
arise if near-PR designs are su�cient). This paper points
out these issues, and summarizes the known conditions for
existence of nonuniform PRFB's. The new results, some
of which are listed as Assertions 1{5, increase the clarity
of the known conditions, and show some new connections
between them.
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One of the basic problems is as follows: Given integers
nk satisfying the maximal decimation condition

X

k

1

nk
= 1;

�nd necessary and su�cient conditions on the set

of nk so that a PRFB can be built using nk as the
channel decimation factors. We can always build such
a PRFB using ideal �lters, as shown earlier. However the
problem becomes complicated if we restrict the �lters to be
realizable (i.e. rational). Another unsolved problem is that
of parameterization of nonuniform PRFB's: Suppose
the decimators nk allow building of rational PRFB's, �nd
all possible rational PRFB's (FIR or IIR) that can be built.

Note that an obvious su�cient condition on the nk for
existence of realizable PRFB's is that all nk be equal |
the theory of rational uniform PRFB's (both FIR and IIR)
is well understood. Further a cascade of PRFB's in a tree
structure results in another PRFB. So another su�cient
condition on the nk is that they be obtainable from a tree
structure in which each unit in itself obeys some su�cient
condition. For example, if each unit is a set of equal in-
tegers then we can cascade uniform PRFB's to build the
nonuniform one (as in Fig. 2). However, neither of these
conditions is necessary. Also, even if the nk can be de-
rived from a tree, all PRFB's built using nk as decimators
need not in general be derivable from tree structures. In
the special case when the nk are derivable from a dyadic
`wavelet-tree', [6] shows that any orthonormal PRFB (i.e.
one satisfying Fk(e

j!)=H�
k (e

j!) in Fig. 1) must be deriv-
able from the same tree. However the general problem of
parameterizing all possible PRFB's with a given set of dec-
imators is still unsolved. Thus, very little is known about
general nonuniform PRFB's as against uniform ones.

2. DELAY CHAIN FILTER-BANKS

This section considers the case when all analysis �lters are
constrained to be delays (i.e. in Fig. 1, Hk(z) = z�lk for
some integers lk). Delays are too simple �lters to be prac-
tically very useful, but the situation is instructive in terms
of conditions on the decimators for PR. An example of this
case was considered in [1]. Here we make the condition
more explicit, and use it to derive further conclusions. The
condition is derived based on the realization that PR is



possible i� no input sample goes through more than

one channel [1] (in which case, maximal decimation en-
sures that each sample goes through exactly one channel).
Thus we require mni � li 6= qnj � lj when i 6= j, for every
choice of integers m; q. If this requirement is satis�ed, then
PR is obtained with Hk(z) = z�lk and Fk(z) = zlk . Such a
PRFB in which all �lters are delays is called a delay chain
FB, and is thus necessarily orthonormal.

Rewriting the above requirement, we conclude the fol-
lowing: The necessary and su�cient condition on the set of
ni for existence of a PR delay chain FB with ni as decima-
tors is that there exist a corresponding set of integers
li satisfying the property that li�lj is not a multiple
of gcd(ni; nj) if i 6= j. In particular, all li have to be dis-
tinct. Also, since a delay of a multiple of ni can be moved
from the analysis �lter across the decimator ni (using the
noble identities), we can assume 0 � li < ni without loss of
generality. The condition on the ni can hence be tested by
a �nite procedure. We also note that in the testing, one of
the delays can be chosen arbitrarily, e.g. l0 = 0 without loss
of generality. An example from [1] satisfying the condition
is the set of 23 integers f6; 10; 15; 30; : : : ; 30g (30 occuring
20 times). Since the gcd of these integers is unity, this set
cannot be built from a tree structure of uniform FB's (as
in Fig. 2). Thus the tree structure condition is not

necessary. We now use the same example to show
Assertion 1. Existence of a delay chain PRFB does

not imply its uniqueness: Both the sets of li f 0; 1; 2; 3; 4; 5;
7; 8; 9; 10; 13; 14; 15; 16; 19; 20; 22; 23; 25; 26; 27; 28; 29 g and
f 0; 5; 7; 1; 2; 3; 4; 8; 9; 10; 11; 13; 14; 16; 17; 19; 20; 21; 23; 26;
27; 28; 29 g can be veri�ed to result in PR delay chains when
used along with the above set of decimators. On the other
hand, the uniform L-channel delay chain FB is unique if
the delays satisfy 0 � li < L. Thus, even with such simple
�lters (delays) in the nonuniform FB, we encounter issues
that do not occur at all with uniform FB's. This gives an
indication that the full parameterization of all nonuniform
FB's is much more involved than that of uniform ones.

3. THE FIR AND RATIONAL CASES

Constraining the �lters to be FIR or rational is much weaker
than insisting that they be delays. However it is not known
whether this allows us to relax the condition on the deci-
mators as compared to the condition of the previous sec-
tion. This section shows how the polyphase decomposition,
a powerful tool for uniform FB parameterization, is not as
useful if we try to apply it to nonuniform FB's. The next
section describes the known necessary conditions on the
decimators, and points out some relations between them.

We can attempt to study the the nonuniform FB of
Fig. 1 by redrawing it as an equivalent uniform FB [1, 2, 5]
with decimation factor L = lcmfnig. The k-th channel
in the nonuniform FB, with decimator nk, is replaced by
pk = L=nk channels in the uniform one as shown in Fig. 4.
On both analysis and synthesis sides, the �lters in these pk
channels are delayed versions of each other, and thus have
mutual dependencies. Equivalently, the analysis polyphase
matrix E(z) of the large uniform FB has a special struc-
ture: Its rows can be partitioned into groups, where the
k-th group, shown in Fig. 5, has pk rows and corresponds

to the analysis �lter Hk(z) in the original nonuniform sys-
tem. The Ek

l (z) (l 2 f0; 1; : : : ; L�1g) in Fig. 5 are the L-th
order polyphase components of the �lter Hk(z). The �rst
row consists of these polyphase components. Subsequent
rows are obtained by shifting length {nk blocks of the pre-
vious row to the right with the last block circulated back
to the left end after multiplication by z�1. (However E(z)
is not a block pseudocirculant, because this construction is
carried out separately for the groups of rows corresponding
to di�erent analysis �lters Hk(z)). Similarly the synthe-
sis polyphase matrix R(z) of the large uniform system has
a form described by taking the transpose of the structure
shown by Fig. 5 and replacing z�1with z. Even though
we can �nd all general matrices E(z) and R(z) that can
give PR, it is di�cult to �nd (i.e. parameterize) all such
matrices that have the group structure described above.
There has been no reported method for exactly imposing
this structure in the design of the large uniform FB.

If the matrix E(z) is paraunitary (PU), then the corre-
sponding nonuniform FB is orthonormal. We can get PR
in this case by taking the synthesis polyphase matrix of
the uniform FB to be R(z) = ~E(z), 1 or equivalently by

taking Fk(z) = ~Hk(z) in Fig. 1. If on the other hand,
E(z) is not PU, then a PRFB can be built i� the inverse
R(z) = E�1(z) has the special structure described above,
so that it is derivable from a nonuniform synthesis bank.
(This is automatically ensured if E(z) is PU, since in that

case R(z) = ~E(z)). However we note
Assertion 2. If the nonuniform synthesis bank is al-

lowed to have LPTV(L) (linear periodically time-varying
with period L) systems in place of the �lters Fk(z) then
we can always obtain PR for arbitrary fnkg (satisfyingP

k

1
nk

= 1). This is achieved by replacing Fk(z) with a

LPTV(L) system with pk = L=nk components F
(i)
k (z); i =

0; 1; : : : ; pk � 1 as in Fig. 6. Comparison of Figs. 6 and 4

shows that the F
(i)
k

(z) act exactly like synthesis �lters in the
large uniform FB. So they can be chosen to make the system
equivalent to the large uniform FB with R(z) = E�1(z).

However the condition on the nk under which we can
�nd LTI analysis and synthesis �lters giving PR remains
unknown. If we can �nd such �lters then [1] shows that we
can also �nd �lters that further form an orthonormal FB.
However this FB would in general have IIR �lters even if
the original �lters were FIR. Again, existence issues for FIR
orthonormal FB's with arbitrary fnkg remain unsolved.

4. NECESSARY CONDITIONS AND THEIR

INTERRELATIONS

Some necessary conditions have been found on the decimat-
ors in order that rational �lters giving PR exist. This sec-
tion states them and shows some relations between them.
� Compatibility test [2]: This arises because each alias fre-
quency in the output should occur at least twice for aliasing
to be cancelled. The test is stated in [1, 2] as an algorithm
to be performed on the decimator values, i.e. (1) Let the
set of decimators be ordered n0 � n1 � : : : � nM�1, then if
nM�2 6= nM�1 the set is not compatible; else (2) delete all
decimators that are factors of nM�1 and repeat step (1) on

1 ~E(z) = E�T (1=z�)



the new set. The starting set is compatible i� the algorithm
runs till all decimators are deleted. We now note

Assertion 3. An equivalent and simpler restatement
of the compatibility test is as follows: Every decimator

must be a factor of some other decimator. A study of
the algorithm of [1, 2] reveals that it is essentially checking
this condition. The largest decimator can only be a factor
of another equal decimator. So it must occur at least twice,
as checked by Step (1) of the algorithm. Once all decima-
tors that are factors of the largest one are removed (in Step
(2)) then the remaining decimators cannot be factors of any
of those that have been removed. So we can repeat Step (1)
on the remaining set.
� A stronger compatibility test: If the decimators are de-
noted by distinct integers ni with the decimator ni occur-

ing Ni times, then de�ne positive integers pi =
lcmfnig

ni
and

mj = mini6=j
lcm(pi;pj)

pj
. Then [1] shows that a necessary

condition for PR is that mj � 1 < Nj for all j. Now from
the de�nitions it follows that mj = 1 i� some pi is a factor
of pj , which in turn is i� nj is a factor of ni. Thus the
earlier compatibility condition can be restated as follows:
If Nj = 1 then mj = 1 too. We see that this is automati-
cally implied by the strong compatibility test. Further, the
strong test is strictly stronger, i.e. it can be violated even
though the compatibility condition holds, as shown in [1].
� Non-coprime decimators: Another necessary condition [1]
is that no two decimators be coprime. This arises from
the equivalence between PR and the biorthogonality re-
lation (Hi(z)Fl(z)) #gil= �(i � l) in Fig. 1. Here gil =
gcd(ni; nl), so coprime ni and nl would imply gil = 1 and
hence the �lters Hi(z) and Fl(z) cannot both be rational.

Assertion 4. The strong compatibility condition and
the condition on non-coprime decimators are unconnected,
i.e. the fact that one holds does not imply anything about
whether the other holds or not. This is proved by the sets
f3; 5; 15; : : : ; 15g (15 occuring 7 times) and f6; 6; 6; 6; 6; 8; 24g.
The former has two coprime decimators (3 and 5) but can
be veri�ed to satisfy both the compatibility conditions. The
latter on the other hand does not have a pair of coprime
decimators, but violates both the compatibility conditions
because the largest decimator 24 occurs only once.

Assertion 5. It is not known whether a situation is
possible where a delay chain does not exist, but a FIR or IIR
solution exists. For example, the set f6; 10; 15; : : : ; 15; 30; 30g
(15 occuring 10 times) cannot be used to build a delay chain
PRFB { the condition of Section 2 is not satis�ed. To verify
this, we use the discussion and notation in Section 2. We
set l0 = 0 corresponding to n0 = 6, and then �nd that all
li corresponding to ni = 15 are uniquely determined by the
condition of Section 2. This leaves no satisfactory choice
for l1 corresponding to n1 = 10, and hence the condition
is violated. However this set of numbers satis�es all the
necessary conditions of this section, and so it is not clear
whether a FIR or IIR solution exists in this case.

5. CONCLUDING REMARKS

The example of Assertion 5 shows that it is not known
whether taking together the unconnected necessary condi-
tions of compatibility and non-coprimeness yields a su�-

cient condition for existence of rational nonuniform PRFB's.
We may note that the set of nk in this example was created
from the one in Section 2 by replacing pairs of decimators of
value 30 by decimators of value 15. In other words, cascad-
ing the example of Assertion 5 with appropriately placed
two-channel uniform FB's will produce the example of Sec-
tion 2. However if we go a step further and replace the
last pair of 30's by 15 then the set loses the compatibility
condition.

Lastly, existence of a delay chain obviously implies that
of FIR and rational PRFB's (a delay chain is both FIR and
rational). Indeed, the condition of Section 2 must hence
imply all the necessary conditions of Section 4. (It might
be instructive to try to prove this fact more directly.) The
interesting question in this case is what other rational FB's
exist with the same set of decimators. One way to create
other PRFB's is by grouping together a set of channels with
equal decimation ratios and inserting an invertible matrix
after the decimators. It is always possible to do this be-
cause by compatibility test, at least 2 channels will have
the same decimation. In general this method will not cover
all possible FB's that can be built using the same set of
decimators { simple example sets like f2; 4; 4g demonstrate
this point. However if we consider only sets that do not
come from tree structures then it is not clear whether the
method covers all possible FB's or not.

One possible approach towards solving the problem in
its full generality is to try and characterize sets of integers
satisfying the various combinations of necessary conditions.
However since much more is known about sets that come
from tree structures, we must eliminate these from consid-
eration. It might help if we could give a simple characteriza-
tion for the sets which can be generated by tree structures.
For example, if the set of decimators contains only two dis-
tinct values, then one can show that it can always be built
from a tree of uniform FB's.
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