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ABSTRACT

This paper addresses the problem of estimating sinusoidal
frequencies in additive and multiplicative colored noises.
Specific Yule-Walker equations yield second-order statistic-
based estimates. The frequency estimates are shown to be
asymptotically normally distributed. Their asymptotic co-
variance is derived.

1. INTRODUCTION AND PROBLEM FORMULATION

Additive noise models have been intensively considered in
many signal processing applications. Indeed, these mod-
els allow to approximate a large class of physical mecha-
nisms contaminated by measurement noise. In particular,
the problem of estimating the frequencies of single or mul-
tiple sinusoids contaminated by Gaussian or non-Gaussian
additive noise has received much attention in the litera-
ture [5] [6]. Unfortunately, most estimation procedures
can fail dramatically, when the signal is contaminated by
non-additive noise components. Multiplicative noise (MN)
has been shown to be a suitable modelling for some non-
linear noise effects. For instance, many problems encoun-
tered in random communication models (fading channels),
Sonar, or Doppler systems concern harmonic signals cor-
rupted by multiplicative and/or additive noise. Frequency
estimation in MN context has then been intensively stud-
ied under many different hypotheses. For example, the fre-
quency estimation problem for a single sinusoid in MN was
addressed in [1], [7]. In [1], the MN was modeled as a para-
metric model, whose parameters can be estimated from the
observation autocorrelation function. In [7], the authors
proposed to use cyclic statistics for the single frequency es-
timation problem. The frequency estimation for multiple
sinusoids is of course more complicated. Stationary or cy-
clostationary approaches were developed for this kind of
problem [4] [8]. This paper studies a new frequency estima-
tion algorithm for a sum of random sinusoids embedded in
multiplicative and additive colored noises. The noise prob-
ability density functions (pdf) and parameters are assumed
unknown. We consider the following model:

yn) = e(n) Y Ajcos(wn+®:) +uln) (1)

Jj=1

e(n)z(n) + u(n)

where:

1) z(n) is the sum of p random harmonics. The angu-
lar positions w; are deterministic constants in the interval
[0,27).The ®;’s are uniformly distributed random variables
in [0,27), which are independent of e(n) and u(n). The
amplitudes A; are unknown and deterministic constants.

2) the MN e(n) is modelled by an MA(q) process driven
by an i.i.d. sequence with unknown pdf:

3) the additive noise u(n) is an MA(q/) process with un-
known pdf (note that the additive noise is white if ¢/ = 0).

The modeling of the additive and multiplicative noises
u(n) and e(n) by a parametric MA model can be justified
by the fact that for any continuous spectral density S(f), an
MA process can be found with a spectral density arbitrary
close to S(f) ([3], p- 132). The algorithm developed in this
paper is based on second-order statistics. However, it is in-
teresting to note that it can be generalized to higher-order
statistics (HOS). Indeed, the HOS-based algorithm can be
used when the additive noise is Gaussian, without specific
structure (not necessary MA). We emphasize that the pro-
posed estimator does not require any knowledge regarding
the distribution of the processes e(n), (n) and u(n). How-
ever, the MN e(n) is assumed to have non-zero mean.

2. AR PARAMETER ESTIMATION

Let p, = E[s(n)] denote the mean of the stationnary ran-
dom process s(n), My;(p)and Ci(p) its kth-order moment
and cumulant computed at lag p = (p;, py.--,pr_y). This
paper assumes that the multiplicative noise e(n) has non-
zero mean, i.e. g, 7 0. In this case, the AR parameters
are estimated from the data using appropriate second- or
higher-order statistics.

For brevity, the study is conducted with covariances,
assuming that additive noise u(n) is a (Gaussian or non-
Gaussian) M A(q") process. However, it could be general-
ized to higher-order cumulants with the same assumptions
on u(n), as well as for any possibly non-M A Gaussian col-
ored additive noise.

Since the processes e(n), z(n), and u(n) are independent,
it follows that

C3(p) = C5"(p) + C3(p), Vp

where ez denotes the multiplicative process e(n)z(n). Using
the MA structure of the process u(n), we obtain C3(p) =
0, |p| > ¢'. Moreover,

C5%(p) = Ms5®(p) — pz, = M5 (p)Ms (p) — p2pu2



= M;5(p) (C5(p) + p2) — pps = Ms(p)C5 (p).
Since e(n) is an MA(q) process, M§(p) = u2, V|p| > ¢
Thus,
ex 2 ~x
3% (p) = peC2(p);Vlpl > q
P

2
Z TJ cos(w;p).

Consequently, for |p| > max(q,q’), the covariances of the
MN process y(n) are

Moreover, it is well known that [5] C3 (p

C3(p) = pe Z —- cos(w;p) (2)

Let (ak)y_q, .. o, denote the coefficients of the polynomial

P
A(z) =H 1 —2cos(w;)z '+ 2 éz arz~
Jj=1 k=0

with ap = 1. The covariances C3(p) satisfy the following
equation:

2p
> a;iC5(p—j)=0,Vp (3)
j=0
Consequently,
2p 2p
> aClp—g)=plY aiCs(p—35)=0,  (4)
j=0 Jj=0

This last equation is valid only if |p — j| > max(q, q’) for any
j €40,...,2p}. Therefore, the validity condition (denoted
condition A) is

condition A: p > p, = max(2p +q,2p + ¢)

Eq. (4) shows that the coefficient vector a= (a1,...,a2p)T
satisfies the following equation (provided that condition A
is verified):

gg(mv p)'ﬁ = 7_g(m> P) (5)
for m > 2p, where C¥(m,p) is the Toeplitz matrix whose
first row is [CY(p — 1),C(p— 2),...,C3(p — 2p)] and first
column [C¥(p—1),C%(p),...,C¥(p+m —1)]" , and

ETONN

The coefficient vector a is then defined by

a=—Cy¥(m, p)ey(m, p) (6)

where (.)# denotes the Moore-Penrose pseudo-inverse. Sev-
eral remarks are now appropriate:

(1) Eq. (5) shows that the condition p, # 0 is required.
Indeed, when p, = 0, C¥(m, p) = 0 and c}(m, p) = 0.

(2) Eq. (5) can be obtained for orders k > 2, leading
to gz(,’nﬁ Py 7pk—1)'g = 72%(’"’1/7 Py 7pk—1)7 prOViding
that appropriate relations between p;, py,..., pr_1, p and ¢
are satisfied.

(3) Eq. (5) was derived assuming that the MA orders ¢
and ¢’ were known. However, if these orders are unknown,

c(m,p) = CY(p+m)]"

eq. (5) can be easily modified by replacing q and ¢’ by
upper bounds § and 7.

In practice, theoretical covariances (or cumulants) are
unknown and should be replaced by sample covariances (or
cumulants). Once the estimate @ is obtained, the angular
position estimates @;, j = 1,...,p, are deﬁned as the p

Z arz"® to the

closest zeros of the polynomial A

unit circle.

3. ASYMPTOTIC PROPERTIES OF THE
FREQUENCY ESTIMATES

This section studies the asymptotic properties of the fre-
quency estimates {@w;}. It has been shown in [6] that the
covariance matrix of {&;} can be obtained from that of {a;}
using the following expression:

@j —Wwj = F(EL\J — aj) +O(N71)

where the matrix F' has a complicated form which depends
upon the model parameters. Therefore, we can restrict at-
tention to the problem of the asymptotic behavior of @ =
{aj}jzl’_ﬂp. Let (/7\5(m, p), and cy(m,p) denote the vec-
tor obtained by replacing the true cumulants in C by their
usual estimates computed from N samples. Suppose the
cumulants of the processes e(n) and u(n) are absolutely
sommable, i.e.

> (prs - pra)| <00, k=23, (7)
Pls s Pr—1=—°
for s = e and wu. In this case, Appendix A

proves that the normalized estimation error vector

~ N T
VI (CY(p) = C3(p1). - CY(p) = C(p)) is asymp-
totically normally distributed for any p = (pq,...,p,), with
zero mean and covariance matrix 3% :
C3(p1) — C3(p1)
VN : ~ N(0,%Y)
C3(p) — C3(py)

where the matrix X% is given by (12) (see Appendix). It
follows that the vector estimate cj(m,p) and the matrix

estimate Q;(m, p) are asymptotically Gaussian:

VE (@(mp) - ellmp) ~NOS)
VA (Sl )~ Cim. ) ~ MO )

where the matrices 3¢ and ¢ are independent of IV, and
can be computed using formula (12). Since the pseudo-
inverse function is differentiable at C¥(m, p) for large m, it
follows from standard results on asymptotic theory that

VN (&5 (m.p) ~ C¥*(m.p)) ~N(0.5gs) ()

where the matrix Yg# can be computed from the matrix
Yc. Consequently, eq’s (6), (8) and (9) yield

VN (@—a) ~N(0,%) (10)



where the matrix 3, is a function of X¢ and Y g« . Finally, it
follows that the frequency vector estimate is asymptotically
normally distributed:

VN (@ — w) ~ N(0,%.) (11)

with X, = FEEFT. It is worth noting that the theoret-
ical results (10) and (11) are similar to that obtained for
sinusoids in additive noise (see [6], for instance).

4. SIMULATION RESULTS

Many simulations have been performed to validate the theo-
retical results. Let al(k) denote the estimate of w; obtained
from the k'™ Monte-Carlo run. Let M denote the number
of runs. The quadratic error €; on the angular position w;
is defined as

M
1 ~ 2
& = m Z (wl(k) — wi)
k=1

. The constant term ﬁ allows to obtain a normalized error
(since the w;’s are in the interval [0,27)). Fig.1 shows the
quadratic errors ¢;’s as a function of the number of sam-

2
ples N for different signal to noise ratios SNR; . = %5

The process z(n) is a sum of 3 sinusoids with angular po-
sitions wy = 27w X 0.1, we = 27 x 0.2, and w3 = 27 x 0.45,
and constant amplitudes A1 = 1, A2 = 3, A3 = 5. The
multiplicative noise e(n) is an M A(2) process with para-
meters [1;0.3; —0.2] driven by an exponentially distributed
sequence such that p, = 0.5. The additive noise u(n) is a
zero-mean Gaussian M A(1) process. The number of runs
is M = 100. The higher the SNR; e, the better the esti-
mation. Indeed, when the variance o2 is low, the MN e(n)
is approximatively constant, and the estimation is easier.
Fig. 2 shows the quadratic errors €;’s obtained for the same
process with angular positions wy = 27 x0.1, wo = 27 x0.12,
and ws = 27 X 0.45. The estimation accuracy clearly de-
creases with respect to fig.1, since two frequencies are closer.
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5. CONCLUSION

This paper studied the estimation of sinusoidal frequencies
in multiplicative and additive noise environment. The mul-
tiplicative noise process was modelled by an MA process.
Specific Yule-Walker equations based on second-order sta-
tistics were then shown to be an efficient tool for frequency
estimation. The estimation could be generalized to higher-
order statistic-based estimates, in presence of Gaussian col-
ored noise. The frequency estimates were shown to be as-
ymptotically normally distributed, and an explicit expres-
sion of the covariance was derived. Moreover, it can be
noted that this problem can be generalized to the estima-
tion of a sum of sinusoids corrupted by independent MA
multiplicative noises.

6. APPENDIX

6.1. PROOF OF THE ASYMPTOTIC NORMALITY OF
(Cg(Pk) - Cg(ﬁk))

k=1,...,l

In order to prove the asymptotic normallity of the cumu-
lant vector estimate, it is sufficient to show that the higher
order cumulants of any linear combination of its compo-

! ~
nents, denoted Xy = v/ N > ak (Cg(Pk) - Cé’(pk)); are
k=1

asympotically zero [2], [5], for any arbitrary scalars {ax},
not all zero. It is also sufficient to prove that the higher

~ l o~
order cumulants of Xy = VN Y arC3(p,) tend to zero.
k=1

Let Ay denote the mth-order cumulant of )N(N. Using the
multi-linearity of the cumulants, it follows that

l

k1,....,km

_ m 1 1

= (\/N) > oy ..oy, ek = Cum
ki,..0.km ) )

N—pi, N—pry,

y(n)y(n + py,) — iy, - -

n=1 n=1

Z Qky "'akvncum (C2y(pk:1)77cg(pkm))

.Y ymy(n+py,,) — 1



where 71, is the sample mean of y(n). Consider the term

Proof: The complete proof is long and tedious, but does
not present particular difficulty. We will only give the main

N—pry N—=Prmy guidelines. Using the fact that third-order cumulants of the
Cum Z y(n)y(n + pkl)y e Z y(n)y(n + Pk,”) process x(n) are zero, it can be first proved that
n=1 n=1
Npiy  N—pry, cov (79 T1 cv To ) = cov (]\/jy T MY To ) =
Y e Y Cum(yn)y(ns + pr)s o gy + ) (r), €2 (r2) 2 (7, M (72)
A;i;i 1\;”:;,1” cov ]\42 (11), ]\42“ (’T2)) + cov (Cg(n), Cg(m))
2y X M) +eov (C(r), ()
nyp=1 Ny =1
1 (13)
Since the process z(n) is bounded with probability 1, it where
follows that N
~ 1
[Ay| < & |Cum(e(ni)e(ns + py, ) + e(na)u(ns + py, )+ () = 5= D (ema(n)u(n + 1) + e(n + )a(n + 7)u(n))
u(m)e(ns + py, )+ u(m)u(ma + py,), - 5)| = £1Ocu(n, . )| e

where & is a constant depending on {Ax}. Using eq. (7), it
can be proved that

N—py, N—pg,,
E E |Oc,u(ny,...,nm)| < +oo
ng=1 Mgy =1
N—pi, N=—pi,,
1
Consequently, 5= — > S Ay(na,..onm) =
B ny=1 nm,m=1

O(1). The same procedure can be used for the terms in-
volving ZZZ It follows that

N—py, 5
1 1 ~
N N Cum Z y()y(n + pr,) — Hys -

N—prpy,

Y

n=1

y(n)y(n+ py,,) — ﬁi) =O(N™)

and Ay = O(Nl_m/2). Therefore, An N—» 0 for m >
2.1

6.2. COMPUTATION OF THE COVARIANCE MATRIX
DYy

For p, =
by:

E [u(n)] = 0, the covariance matrix X% is given

+ oo
)= {C5(r1,p,p+ 72) + C5(p)CS (p + 72)

+C3(p—11)C5(p+ 72)| My (11, p, p + T2)

+Ci(p+ 71,p,72) + C5(p)C3 (p+ 71 — T2)

+C3(p+ 711)C3 (p — T2) + M5*(p) M3 (p+ 72 — T1)
M3*(p — 71) M5 (p + 72) + M3* (p + 72) M5'(p — 71)

+M5%(p 472 — T1) M3 (p)}

E%(Tl,’rg

(12)
with

My (11, 72,73) = C§(11,72,73) + C5(71)C3 (T2 — T3)
+C5(12)C3 (11 — 73) + CF(713)C5 (11 — T2)

and

p Al
C4(T1,T2,T3 Z —8&[COS(wk(T1—T2—T3))
T

+ cos(wg(T2 — 71 — )) + cos(wg (T3 — 71 — T2))]

The second term of (13) is given by Bartlett’s formula.
However, this formula can not be used for the two oth-
ers terms, which do not verify the formula’s assumptions.
These terms can be computed based on the two following
lemmas:

lemma 1: Assume that °'°° |\,| < co. Then, lim

N—oo
EDDARD DUBPUEIED DU
lemma 2: If w # 0, NZ ccos(wn + ¢) =
~ sin(Nw/2) cos (N + 1)w/2 + d))/sm(w/2).
It can be shown from lemma 2 that ngnoo
N—7y

0 for
(7), and lemmas 1

=) Donet meoC3(m —n 4 1) =
any 7. This last result7 as well as eq.
and 2, allow us to obtain (12) W

If the mean p,, is non-zero, the sample mean can be sub-
stracted from the measurements y(n) to get a zero-mean
process, so that formula (12) holds true.
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