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ABSTRACT

In high resolution methods applied to Uniform Linear Ar-
rays (ULA), the pre-processing that consists in forcing the
estimated Cross Spectral Matrix (CSM) to be Toeplitz by
averaging its elements along its diagonals is known to in-
crease drastically the resolving power: that is why it is al-
ways done in practise. However, this approach is limited to
linear arrays because of the required Toeplitz structure for
the CSM. This papergeneralizesthis technique to arrays
of arbitrary geometry: the developed method is referred to
as rectification. It proceeds by searching first for a vector
subspace of hermitian matrices that contains the manifold
generated by the CSM’s when the Angle Of Arrival varies:
this preliminary step is performed only one time for a given
array geometry. Next, rectification of estimated CSM’s is
achieved by projecting them onto this subspace, resulting
in denoising and increased resolving power of source local-
ization methods ata very low computational cost. As a by
product, the storage requirements for the CSM’s are greatly
reduced.

1. INTRODUCTION

In high resolution localization of uncorrelated sources us-
ing Uniform Linear Arrays (ULA), the pre-processing that
consists in forcing the estimated Cross Spectral Matrix (CSM)
to be Toeplitz by averaging its elements along its diagonals
is known to increase drastically the resolving power [1], and
its theoretical impact on resolution has been studied in [3].
However, this approach is limited to linear arrays because of
the required Toeplitz structure for the CSM: therefore, there
is a real need for developping similar simple pre-processing
for other arrays. One possible approach with arrays of arbi-
trary geometry could be the mapping of the actual array into
a virtual linear array as was done in [2] in the context of spa-
tial smoothing: however, this is anindirectway to tackle the
problem since it involves first the intermediate problem of
designing the appropriate virtual array. Instead, we develop
in this paper adirect method for arrays of arbitrary geom-
etry that will be referred to asrectification. It proceeds by
searching first for a vector subspaceE of hermitian matrices

that contains the manifold generated by the CSM’s when
the Angle Of Arrival (AOA) varies: this preliminary step is
performed only one time for a given array geometry. Next,
rectification of estimated CSM’s is achieved by projecting
them onto this subspaceE , resulting in denoising and in-
creased resolving power of source localization methods as
demonstrated by simulations. The paper is organized as fol-
lows. Section 2 introduces notations and background in the
case of ULA. Section 3 develops the proposed algorithm.
Section 4 shows how to determine the dimension ofE . Fi-
nally, section 5 presents simulation results that demonstrate
the increased resolving power when applying localization
methods after rectification.

2. NOTATIONS AND BACKGROUND

Let us consider an array ofM sensors with steering vector
a(�; f) where� is the AOA and f is frequency. We will
assume that the array and the sources are coplanar, and that
the steering vectors have been normalized to 1. Let

�(f) =

PX
p=1

�p(f) a(�p; f)a
H(�p; f) + �n(f) I (1)

be the CSM at f, where�p(f) and�n(f) denote the sources
and noise Power Spectrum Density (PSD). The CSM is con-
ventionally estimated by windowing and Fourier transform-
ing the array output data overN consecutive time inter-
vals, and computing the empirical covariance matrix of the
Fourier transformed datax1(f); � � � ;xN (f):

b�w(f) = 1

N

NX
n=1

xn(f)x
H
n (f): (2)

N will be referred to as the number of data. Provided that
the resolution of the Fourier transform is high enough, this
estimate is known to be unbiased and complex Wishart dis-
tributed withN degrees of freedom. From now on, f will
be fixed and the dependence of CSM’s, PSD’s and steering
vectors on f will be omitted for clarty.



For uniform linear arrays and uncorrelated sources,� is
well known to exhibit an Hermitian Toeplitz structure. This
Toeplitz structure is usually taken into account by averag-
ing b�w along its diagonals. This simple pre-processing in-
creases the estimation precision of the CSM and thereby im-
proves the resolving power of localization methods. It can
be interpreted as the projection of the estimated CSM onto
the vector space spanned by Hermitian Toeplitz matrices if
the scalar product of two hermitian matricesA andB is de-
fined astr(AB) wheretr(:) denotes the trace of a matrix.
As we will see later, the proposed method for arbitrary ar-
rays will also project the non parametric CSM estimate (2)
onto an appropriate vector subspace of hermitian matrices.

For clarty, let us recall briefly a few elementary facts on
hemitian matrices and set some notations that will be used
later. Separating real and imaginary parts, the setH of her-
mitian matrices of orderM is a vector space of dimension
M2 over the field of real numbers.(A;B) = tr(AB) de-
fines a scalar product with corresponding normk : kF , the
so-called Frobenius norm. Letvec(A) be the real vector
of dimension2M2 whose components are equal to the real
and imaginary parts of the elements ofA taken in any (but
fixed) order, and denote byunvec(:) the inverse operation:
unvec(vec((A)) = A. Then, the scalar product ofA and
B is simply equal to the ordinary scalar product ofvec(A)
andvec(B): (A;B) = vec(A)T vec(B).

3. RECTIFICATION OF CSM’S

From (1), CSM’s are linear combinations of the identity
matrix and matrices of the form:

a(�)aH (�):

We will look for anL dimensional subspaceE of hermitian
matrices (the value ofL will be discussed later) that con-
tains the identity matrix and which is as close as possible of
the manifold generated by the matricesa(�)aH (�) when the
AOA � varies over the set� of allowed values. Generally,
it must be emphasized that this subspaceE will not contain
exactely the matricesa(�)aH (�) (except for particular array
geometries like the ULA). However, it can be made as close
of them as we wish by choosingL sufficiently large: this is-
sue will be discussed in detail in section 4 where a practical
rule for determiningL will be given.
Choosing a quadratic fit, we first perform the following pre-
liminary step.

Preliminary step. Let E be anyL dimensional subspace
of hermitian matrices that contains the identity matrix, and
� [ ] the orthogonal projector operator ontoE . Consider the

following criterion

f(� ) =

Z
�

k� [a(�)aH (�)]�a(�)aH (�)k2F g(�) d� ; (3)

whereg(�) is a given positive weighting function. Then, the
subspaceE that minimizes (3) under the constraintI 2 E
can be obtained as follows. Set

d(�) = vec(a(�)aH (�)�M�1
I) (4)

and

R =

Z
�

d(�)d(�)T g(�) d� : (5)

Let u1, � � � , uL�1 be theL� 1 greatest eigenvectors ofR.
The L matricesU1 = unvec(u1), � � � ,UL�1 = unvec(uL�1),
UL = 1=

p
M I form an othonormal basis ofE .

Proof: See appendix A

Remark 1: In practise, two values of the weighting func-
tion g(�) in (3) will be used:g(�) = 1 when an analytic
expression is available for the steering vectors, andg(�) =P

i �(���i) when the steering vectors have been measured
for a discrete set of AOA�i as occurs when the array has
been experimentally calibrated.

Rectification scheme.Assume that the value ofL has been
choosen such that the difference betweena(�)aH (�) and
� [a(�)aH (�)] is negligible. Thus,E contains any exact
CSM, and the rectification of the estimated CSMb�w (2)
consists in projecting it ontoE , thereby increasing the esti-
mation precision:

b� =

LX
l=1

tr(b�wUl)Ul : (6)

Remark 2:In the ULA case, it is easy to show that the av-
eraging along the diagonals of the estimated CSMb�w to
make it Toeplitz reduces to (6) withL = 2M and appropri-
ate Hermitian matricesUl.

4. DETERMINATION OF THE DIMENSION OF
THE APPROXIMATING SUBSPACE E

By projecting the CSM estimateb�w onto a subspace of
Hermitian matrices, rectification lowers the original vari-
ance of the elements ofb�w. However, it can also bias the
estimate whenE does not contain exactly the array mani-
fold. We propose to choose the dimensionL of E so that the
bias induced by rectifyingb�w is much smaller than the orig-
inal MSE of b�w. As shown below , this results in a simple



rule for determiningL : it is the smallest value that ensures
the following inequality

N sup
�

k�? �a(�)aH (�)� k2F � 1 (7)

where�?[ ] is the projection operator ontoE? andN is
the number of data. In practise, the above inequality was
considered as satisfied when its left member was less than
0.01. The sequel of this section provides a proof of (7).

MSE of b�w. Set b�w = �+��w: (8)

From (2),b�w is Wishart distributed. Let

�w = E[k��wk2F ] (9)

denote the MSE forb�w. Standard statistical properties of
Wishart matrices yield:

�w =
1

N
tr2(�)

=
1

N
(
X
p

�p +M �n)
2 (10)

where�p and�n are defined in equation (1).

Bias of the rectified CSM.Let us denote by� [ ] and�?[ ]
the projection operators ontoE and its orthogonal. The
mean of the rectified CSMb� is given by

E[b�] = E
h
� [b�w]i = � hE[b�w ]i = � [�] :

After substituting for expression (1) of� and noting that
�
? [I] = 0, we obtain the bias of the rectified CSM :

��E[b�] = �? [�] =
PX
p=1

�p �
?
�
a(�p)a

H (�p)
�
: (11)

To compare the bias to the MSE (10), we take its squared
norm:

�b = k��E[b�]k2F
�

 
PX
p=1

�p k�?
�
a(�p)a

H (�p)
� kF

!2

� (

PX
p=1

�p)
2 sup

�

k�? �a(�)aH (�)� k2F (12)

where the upper bound for�b can be reached for a single
source with appropriate AOA. Comparison of expressions
(12) and (10) shows that:

�b=�w � N sup
�

k�? �a(�)aH (�)� k2F (13)

where the upper bound can be reached in the single source
case with�n = 0. Thus, inequality (7) ensures as an-
nounced that the bias induced by rectifyingb�w is much
smaller than the original MSE ofb�w.

5. SIMULATIONS

We consider anM = 10 sensors circular array with ra-
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Figure 1:sup� k�?
�
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� k2F as a function ofL.

dius 0:7� where� is the wave-length (greater radii yield
vary high side lobes in the array response). Thus, the di-
mension of the hermitian matrices space isM2 = 100. Fig-
ure 1 displays the maximum distance between the matrices
a(�)aH (�) and the subspaceE as a function ofL = dim E .
This distance falls suddenly forL = 21 where it is equal
to 5 10�5: according to the selection rule of section 4, this
value ofL is convenient for a number of data less or equal
to 200. So,onlyL = 21 dimensions suffice for representing
CSM’s with very high accuracy, while the dimension of the
hermitian matrices space isM2 = 100 !

The next simulation illustrates the benefits of the proposed
rectification scheme. There areP = 2 sources, each with
SNR per sensor -7 dB. The number of data isN = 200.
Figure 2 displays the results obtained when applying MU-
SIC to the original CSM estimates (upper plots) and to the
rectified ones usingL = 21 (lower plots) : improvment is
spectacular.

6. CONCLUSION

A preprocessing technique, originally introduced for uni-
form linear arrays, has been extended in this paper to ar-
rays of arbitrary geometries. For a any array geometry, we
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Figure 2: MUSIC applied to: original matrices (upper plot),
rectified matrices (lower plot).

have shown how a subspaceE of hermitian matrices can
determined so that it contains all the CSM’s with a given
accuracy. Simply projecting the estimated CSM ontoE im-
proves the estimation precision of the CSM and increases
the resolving power of localization methods as confirmed
by simulations.
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A. APPENDIX

Let us first decompose the spaceE into E1 � E2 where:E2 is the
one dimensional space spanned byI, andE1 is theL � 1 dimen-
sional space orthogonal toE2. Let�1 and�2 be the corresponding
projection operators, so that� = �1 +�2. Denote by

D(�) = a(�)aH(�)�M�1
I (14)

the residue of the projection ofa(�)aH(�) ontoE2. Then, it easy
to check that criterion (3) is equivalent to :

f1(�1) =

Z
�

k�1[D(�)]�D(�)k2F g(�)d� : (15)

Let us denote byvec(E1) the subspace of dimensionL�1 spanned
by the vectorsvec(A) whereA 2 E1. Let� be the rankL � 1
projection matrix ontovec(E1). Then, criterion (15) can be rewrit-
ten :

f1(�) =

Z
�

k�d(�)� d(�)k2 g(�)d�

=

Z
�

kd(�)k2 g(�)d� �
Z
�

d
T (�)�d(�) g(�)d�

whered(�) = vec(D(�)). Minimizing f1(�) is clearly equiva-
lent to maximize

h(�) =

Z
�

d
T (�)�d(�) g(�)d�

= tr

�
�

Z
�

d(�)dT (�) g(�)d�

�
= tr(�R) (16)

over rankL� 1 projectors. The differential ofh(�) must vanish,
which yields :

�h = tr(��R) = 0 : (17)

To characterize elementary variations of the projector��, we note
that they are obtained by making arbitrary infinitesimal rotations
of its invariant subspace. Rotations in the neighbourhood of the
identity matrix can be expanded asI + �
 + � � � + �n
 + � � �,
where the elements of�n
 are of ordern with respect to those of
�
. This rotation being unitary, we must have(I+�
+� � �)2 = I

which yields for the first order term:

�
+ �
T = 0 : (18)

Thus, we get :

�+ �� = (I+ �
+ � � �)� (I+ �
+ � � �)T ; (19)

which gives by retaining only the first order term in�
:

�� = �
�+� �
T ; (20)

where�
 = (�
ij) is any matrix satisfying (18). By substituting
for �� from (20) into (17) and taking (18) into account, we obtain:

�h = tr(�
 [�R�R�]) = 2
X
i<j

�
(i; j)S(j; i) (21)

whereS = �R � R�. Equation (21) must vanish for any
�
(i; j) which impliesS = 0, or equivalently�R = R�:
� andR commute. Consequently, they share the same eigenvec-
tors, and to maximize (16) these eigenvectors must be theL � 1
greatest onesu1, � � � , uL�1 of R. ThusU1 = unvec(u1), � � �
, UL�1 = unvec(uL�1) form a basis ofE1 and an orthonormal
basis ofE = E1�E2 is simply obtained by addingUL = 1=

p
M I

to it.


