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ABSTRACT

The problem of estimating the phase parameters of a phase
modulated signal in the presence of coloured multiplicative
noise (random amplitude modulation) and additive white
noise, both Gaussian, is addressed. Closed-form expressions
for the exact and large-sample Cramer-Rao Bounds (CRB)
are derived. It is shown that the CRB is not signi�cantly
a�ected by the colour of the modulating process, especially
when the signal-to-noise ratio is high. Hence, maximum
likelihood type estimators which ignore the noise colour and
optimize a criterion with respect to only the phase parame-
ters are proposed. These estimators are shown to be equiva-
lent to the nonlinear least squares estimators which consist
of matching the squared observations with a constant am-
plitude phase modulated signal when the mean of the mul-
tiplicative noise is forced to zero. Closed-form expressions
are derived for the e�ciency of these estimators, and are
veri�ed via simulations.

1. INTRODUCTION

The estimation of the instantaneous frequency of Phase
Modulated Signals (PMS) is a problem which arises in many
applications. For example, in coherent radar systems, the
phase modulation is directly related to the target range [7,
ch 7, p58-65]. The important case of harmonic signals is
obtained when the radial velocity of the target is constant.
The phase variations can often be approximated by a �nite-
order (often low) polynomial, and the resulting signal model
is called the Polynomial Phase Signal (PPS) [6]. The esti-
mation of the phase parameters when the amplitude signal
is constant has received much attention in the literature.
Recent papers have addressed the more general problem
where the signal amplitude is randomly time-varying; see,
e.g., [5, 8, 3]. Random amplitude modulation, or multi-
plicative noise, shows up, for example, in active sonar due
to dispersion in the medium [1]. The signal model consid-
ered here is then:

x(t) = s(t)ej�(t) + v(t); t = 0; :::; N � 1; (1)

where s(t) and �(t) are the instantaneous amplitude and
phase, respectively, and v(t) is additive noise. We make the
following assumptions:
(AS1) The amplitude signal s(t) is Gaussian and real-
valued, but not necessarily stationary
(AS2) v(t) is zero-mean circular white Gaussian with vari-
ance �2v.
(AS3) �(t) is a deterministic function of time which is
parameterized by a �nite dimensional parameter vector,
' = ['0; :::; 'M ]T ; �(t) is di�erentiable with respect to '.
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Since the mean of s(t) is allowed to be time-varying, PMS
with deterministic amplitude are seen to be special cases of
(1). Thus, the model (1) under (AS1)-(AS3) is quite gen-
eral. In later sections, we will constrain (AS1) by assuming
that the autocovariance function of s(t) is time-invariant.
This will be referred to as assumption (AS1')
To assess the performance of the estimators of the phase

parameters in (1), we derive the Cramer-Rao Bound (CRB).
The CRB for a constant amplitude PPS in circular white
Gaussian noise was derived in [6]. The CRB for model (1)
under assumptions (AS1)-(AS3) has been considered in [2]
under additional assumptions (the covariance function was
assumed to be stationary, and both �s(t) and �(t) were
expressed as linear combinations of known basis functions;
neither assumption is made in this paper). The real-valued
case was studied in [9]. Here, we derive expressions for the
CRB which are: i) computationally attractive; ii) facilitate
the derivation of the asymptotic (large-sample) CRB; iii)
lead to new insights into the behavior of the error bounds.
The second part of the paper is devoted to the estimation

of the phase parameters in (1). To reduce the complexity of
the exact Maximum Likelihood (ML) estimators, we ignore
the colour of the amplitude s(t). When the mean of s(t) is
forced to zero in this pseudo ML scheme, the resulting esti-
mator is shown to coincide with the nonlinear least squares
estimators which consist of matching the squared obser-
vation with a constant amplitude PMS. The degradations
introduced by the zero-mean and i.i.d. assumptions are
studied analytically and through simulations. It is shown
that these degradations are not very signi�cant, especially
when the Signal-to-Noise Ratio (SNR) is high.

2. AN EQUIVALENT MODEL

Since v(t) is zero-mean, white, circular and Gaussian, v(t)

and v(t)ej�(t) are statistically equivalent. Indeed, v(t)ej�(t)

is a zero-mean Gaussian variable; hence, it is completely
characterized by

r = E

����v(t)ej�(t)���2� and c = E

��
v(t)ej�(t)

�2�
where E denotes the mathematical expectation operator.
Parameter r is the variance, �2v, and the circularity of v(t)
implies that c = 0. A statistically equivalent model for (1)
is then given by

x(t) = (s(t) + v(t))ej�(t) : (2)

In fact, this equivalence holds for any v(t) which is iid and
circularly symmetric, and not necessarily Gaussian.

3. CRAMER-RAO BOUND

Let �s(t) and rs(t; � ) denote the mean and the covari-
ance function of the amplitude process. We assume that



�s(t) and rs(t; �) are described by a �nite dimensional non-
random parameter vector � = [�1; :::; �p]

T . The complete
deterministic parameter vector of the signal model in (2) is
� = ['T ;�T ; �2v ]

T . Denote the observed data vector by

x = [x(0); :::; x(N � 1)]T : (3)

Let xr = Rfxg and xi = Ifxg, where R and I denote the
real and imaginary parts. The elements of these vectors are
given by [using model (2)]

xr(t) = (s(t) + vr(t)) cos �(t)� vi(t) sin�(t) (4)

xi(t) = (s(t) + vr(t)) sin�(t) + vi(t) cos �(t) (5)

where vr(t) and vi(t) are the real and imaginary parts of
v(t). Let s, vr and vi be de�ned similar to x in (3), and
let ex = [xTr ;x

T
i ]
T . Let �s and Rs denote the mean vector

and covariance matrix of s. Notice that vr and vi are i.i.d.
sequences of zero-mean Gaussian variables with variance
�2v=2, and are mutually independent. We will �nd it useful
to de�ne the partial derivatives, �k(t) = @�(t)=@'k:

3.1. Likelihood Function

Consider the change of variables (s + vr;vi) ! (xr;xi),
where the elements of xr and xi are given in eqs. (4) and
(5). The Jacobian of this transformation is unity. The
vectors (s+ vr) and vi can be expressed as

s+ vr = Rfx� e�j�(t)g; vi = Ifx� e�j�(t)g (6)

where e�j�(t) = [e�j�(0); :::; e�j�(N�1)]T , and � denotes
element-wise multiplication (the Hadamard product). Since
s and vr are Gaussian and mutually independent, the vec-
tor (s + vr) is Gaussian with mean vector �s and covari-
ance matrix R = Rs+I �2v=2; where I denotes the (N�N)
identity matrix. Since vi is independent of (s + vr), the
log-likelihood function (LLF) of ex for a given � is, after
dropping constant terms, found to be

lnL(ex=�) = � 1
2
ln det(R)� N

2
ln�2v

� 1
2

h
Rfx� e�j�(t)g ��s

iT
R�1

h
Rfx� e�j�(t)g � �s

i
� 1
�2
v

h
Ifx� e�j�(t)g

iT h
Ifx� e�j�(t)g

i
:

(7)

3.2. Fisher Information Matrix

Under our modeling assumptions, we obtain a closed-form
expression for the Fisher Information Matrix (FIM); recall
that the CRB is the inverse of the FIM.

Proposition 1. Under assumptions (AS1)-(AS3), the FIM
is block diagonal, i.e., J';� = 0 and J';�2

v
= 0, and the

CRB for the phase parameter vector is given by

CRB(') = J�1';'

where, for k; ` = 0; :::;M; and

J'k ;'` =

N�1X
t=0

�k(t)�`(t)

"
2
E
�
s2(t)

	
�2v

+
�2v
2

(t)� 1

#
(8)

where 
(t) is the t-th element of the diagonal of R�1.
Proof: See [4]. 2

We make the following interesting observations:

� Since J�;� is block-diagonal, the CRB for the phase pa-
rameters are the same whether or not the noise param-
eters (�2v;�s; Rs) are known. This decoupling was also
noted in [2] but under additional assumptions.

� When �(t) is a multi-linear function of ', the CRBs for
the phase parameters are independent of the actual
values of these parameters. This is in contrast with
the real-valued case (see e.g., [9]) where this indepen-
dence holds true only asymptotically, i.e., for large val-
ues of N . Furthermore, this property cannot be in-
ferred directly from the FIM formula given in [2, eq.
81], which explicitly involves the phase waveform (re-
call that [2] makes additional restrictive assumptions).

For the PPS �(t) =
PM

k=0 'kt
k, �k(t) = tk in (8).

� When the covariance function of s(t) is time-invariant,
matrix Rs is Toeplitz and the 
(t)'s can be computed
recursively using the Levinson-Durbin algorithm: Let
g denote the length N�1 linear prediction �lter corre-
sponding to the N �N autocorrelation matrix R, i.e.,
Rg = �2u[1; 0]

0, with g(0) = 1. Then,


(t) = 
(t�1)+
jg(i)j2 � jg(N � i)j2


(0)
; i = 1; ::::; N�1;

A closed-form expression for the large sample case is
given in the next section.

� If the SNR is low, i.e., �2v is large, then, R � 0:5�2vI and

(t) = 2=�2v 8t.

� If the SNR is high, i.e., �2v is small, R � Rs. If s(t) is
an AR(p) process, we can write 
(t) explicitly in terms
of the AR parameters, 
(t) = 
(0)

Pp
k=0 ja(k)j

2 ; p <
t < N�p ; so that if N >> p, the end-e�ects are small,
and we may assume that 
(t) is a constant. These
end e�ects are negligible for PPS-type signals, even for
�nite N , since the relevant FIMs involve sums of the
form 
(t)tk.

� When the signal amplitude is temporally independent,
i.e., rs(t; �) = �2s(t)�(�), and Rs = diag(�2s(t)), the
FIM entries J'k ;'` are given by

J'k ;'` =
N�1X
t=0

�k(t)�`(t)

�
2
�2s(t)

�2v
+

4�4s(t)=�
4
v

2�2s(t)=�2v + 1

�
� When the signal amplitude is deterministic, i.e., �s = s

and Rs = 0, we obtain

J'k ;'` =
XN�1

t=0
�k(t)�`(t)

�
2s2(t)=�2v

�
:

4. ASYMPTOTIC CRB

In this section, we assume that the autocovariance function,
but not the mean, of the amplitude signal is time-invariant,
i.e., rs(t; �) � rs(� ); 8t, i.e., assumption (AS1') is in force.
We make the mild assumption that

lim
N!1

1

N

N�1X
t=0

�2s(t) = �2so (9)

where �2so is �nite. We also assume that there exist real
numbers n(k) and n(`) such that, for k; ` = 0; :::;M ,

aN(k; `) ,
1

N

N�1X
t=0

�k(t)�`(t)

Nn(k)+n(`)
�!
N!1

a(k; `) (10)

where the a(k; `)'s are �nite constants, and the matrix A =
fa(k; `)g is non-singular. Also de�ne

bN(k; `) =
1

N

N�1X
t=0

�k(t)�`(t)

Nn(k)+n(`)
�2s(t)

cN(k; `) =
1

N

N�1X
t=0

�k(t)�`(t)

Nn(k)+n(`)

(t)



Following Proposition 1, we consider

Nn(k)+n(`)+1J'k ;'` =

�
2�2s
�2v

� 1

�
aN (k; `)

+
2

�2v
bN (k; `) +

�2v
2

:cN (k; `) (11)

We assume that the limit of bN(k; `), k; ` = 0; :::;M; as N
tends to in�nity exists and is given by

bN (k; `) �!
N!1

�2so a(k; `) (12)

where �2so is given in (9). This condition is ful�lled, for
example, when �s(t) is time-invariant or periodically time-
varying.
Recall that in the case of �nite N , the diagonal of the

inverse of a Toeplitz matrix is not constant, so that R�1

is not the covariance matrix of a stationary process. As
N !1, R�1 also becomes Toeplitz, and the asymptotic
values of the (constant) diagonal elements of R�1 are


(t) �!
N!1

1

2�

Z �

��

1

Ss(!) + �2v=2
, 
; 8t (13)

where Ss(!) is the power spectrum of s(t); hence,

cN (k; `) �!
N!1


 a(k; `)

Therefore, we obtain

Nn(k)+n(`)+1J'k ;'` �!
N!1

� a(k; `); k; ` = 0; :::;M

with

� , 2SNR+
�2v
2

 � 1 (14)

where we have de�ned the SNR as SNR , (�2so + �2s)=�
2
v.

The large sample FIM block J';' can be written as

J';' �
N!1

�N 	A	 (15)

where 	 = diagfNn(0); :::; Nn(M)g and A = fa(k; `gMk;`=0g.

Proposition 2. Under assumptions (AS1'), (AS2), (AS3),
(9), (10) and (12), the large sample CRB for the 'm's are

ACRB('m) = ��1
A�1m;m

N2n(m)+1
; m = 0; :::;M (16)

where A�1m;m denotes the mth diagonal element of A�1. 2

Thus, an e�cient estimator can be consistent only if
n(m) > �0:5. The matrix A depends only upon the
parametrization of the phase function; the in
uence of the
coloured amplitude modulation and the additive white noise
are completely captured by � which can also be written as

� = 2
�2so + �2s

�2v
� 1 +

1

2�

Z �

��

�
Ss(!)

�2v=2
+ 1

�
�1

d! :

Parameter � consists of two terms: a time-averaged SNR
and a frequency-averaged inverse SNR. In the next section,
we study the relationship between � and the bandwidth of
Ss(!). Parameter � can be interpreted as an e�ective SNR,
and reduces to the usual de�nition of SNR for the constant
amplitude case.
In the important case of PPS, A is the Hilbert matrix

whose (k; `) element is 1=(k+ `+1), k; ` = 0; :::M , n(m) =
m, and 	 = diagf1; N; :::; NMg [6]; an expression for A�1 is
given in [6]. As in the case of the constant amplitude PPS
in additive noise, the large sample CRB for 'm is of order
1=N2m+1, even when the amplitude is a random process.

5. EFFECT OF THE SIGNAL AMPLITUDE
BANDWIDTH

We consider the asymptotic CRB given in Proposition 2. To
get insight into the in
uence of the spectrum of the random
amplitudes on the CRB, consider a band-limited process:

Ss(!) =

�
�2
s

2B
if j! � !oj � 2�B

0 if j! � !oj > 2�B
(17)

where !o is the center frequency of Ss(!) and 0 � B � 0:5.
Substituting (17) into (13) and using (14), we �nd

��1 ,
R2 +B

2R2(R1 +R2) + 2R1B

where R1 = �2so=�
2
v and R2 = �2s=�

2
v denote the coherent

and non coherent SNRs of the PMS. Parameter ��1 is an
increasing function of the bandwidth parameter B. This
indicates that the CRBs for the phase parameters increase
with the bandwidth of the amplitude signal s(t); indeed,
as the bandwidth of s(t) increases, we have more smearing,
making parameter estimation harder. To quantify the e�ect
of the signal amplitude bandwidth on the asymptotic CRB,
we consider

� ,
maxB ACRB('k)

minB ACRB('k)
= 1 +

1

2SNR + ISNR

where we have de�ned the intrinsic SNR as ISNR ,

�2so=�
2
s = R1=R2. Notice that � is the same for all the 'k's,

k = 0; :::;M , i.e., it is independent of the parametrization,
and � is almost unity unless both SNR and ISNR are very
low. Therefore, for high SNR (i.e., R1 and/or R2 large),
the in
uence of the bandwidth of the signal amplitude is
not signi�cant and ��1 is approximated by

��1 �
�
�jB=0

�
�1

=
1

2SNR
=

�2v
2(�2so + �2v)

(18)

When B = 0, the amplitude process is either a constant or a
harmonic. This approximation also holds true when ISNR
is high regardless of the value of SNR. Indeed, in this case,
the amplitude signal is mainly deterministic and the e�ects
of its random component are minor. On the other hand, if
ISNR is low, the deviation of � from 1 may be large for
small values of SNR since

�jISNR=0 � 1 =
1

2SNR
=

1

2R2
=

�2v
2�2s

:

6. MAXIMUM LIKELIHOOD ESTIMATION

According to section 5, the colour of the random amplitude
modulation does not signi�cantly a�ect the CRB when the
SNR is high, regardless of the value of the intrinsic SNR.
Motivated by this result, we ignore the colour of s(t) and
we force its mean to be zero, i.e., �s(t) = 0; rs(t; �) =
�2s�(�); 8t, for the estimation of the phase parameters.
Making this assumption reduces the complexity of the exact
ML estimate. In section 7, we assess the asymptotic perfor-
mance of these pseudo ML estimators and the degradations
introduced by these assumptions.
Instead of �2s we consider �2 = �2s + �2v=2; �2 and �2v

may be viewed as independent parameters since �2s 6= 0.
The parameter vector is � = ['T ; �2; �2v]

T , and the LLF in
(7) reduces to

lnL(ex=�) = �
N

2
ln(�2)�

1

2�2

N�1X
t=0

h
Rfx(t)e�j�(t)g

i2
�
N

2
ln�2v �

1

�2v

N�1X
t=0

h
Ifx(t)e�j�(t)g

i2
(19)



If b' denotes the ML estimate of ', the ML estimates of �2

and �2v are given by

b�2 =
1

N

N�1X
t=0

h
Rfx(t)e�j

b�(t)g
i2

(20)

b�2v =
2

N

N�1X
t=0

h
Ifx(t)e�j

b�(t)g
i2

(21)

where b�(t) is the phase sequence when ' = b': Replacing
�2 and �2v by their ML estimates in (19), and dropping
constant terms, we see that the ML estimate of 'maximizes

�
1

N2

N�1X
t=0

h
Rfx(t)e�j�(t)g

i2 N�1X
t=0

h
Ifx(t)e�j�(t)g

i2
or equivalently

C(') =

"
1

N

N�1X
t=0

Rfx2(t)e�2j�(t)g

#2
: (22)

The ML estimates of the phase parameters are then

(b'0; :::; b'M ) =argmax
'

C(') (23)

Note that (22) is equivalent to a non-linear least squares
algorithm which matches the squared data to exp(j2�(t))
under the assumption that the amplitude is constant (see
[4]). Since (23) is a nonlinear optimization problem, we
must resort to numerical optimization techniques. In the
case of the harmonic signal, (i.e., �(t) = '1t+'0), the ML
estimate of the frequency '1 is obtained by peak picking
the discrete Fourier transform of the squared data. This is
equivalent to the Cyclic-Variance-based estimator in [5, 3].

7. PERFORMANCE ANALYSIS

In this section, we derive expressions for the asymptotic
performance of the phase parameter estimator in (23).

Proposition 3. Under assumptions (AS1'), (AS2), (AS3),
(9), (10) and (12), the asymptotic variances of the phase
parameter estimates in (23) are given by

var (b'm) = 1

2

SNR + 0:5

SNR2

A�1m;m

N2n(m)+1
; m = 0; :::; M

Proof: see [4]. 2

Using Propositions 2 and 3, the asymptotic relative e�-
ciency (ARE) of the estimate in (23) is thus

ARE ,
ACRB(b'm)
var(b'm) =

2��1SNR2

SNR + 0:5

For the bandlimited model in (17), the ARE is

ARE =
SNR

SNR+ 0:5

�
1 +

B

SNR +B � ISNR

�
The ARE is an increasing function of B; hence

ARE � AREjB=0 = SNR=(SNR + 0:5) (24)

Moreover, this minimal value increases with SNR. For in-
stance, ARE > 0:8 when SNR > 2 and ARE > 0:95 when
SNR > 10. Thus, at high SNR, ARE � 1, and the esti-
mate in (23) is almost asymptotically e�cient. Notice that
when B = 0:5 and ISNR = 0, ARE = 1, as expected, since
the estimates in (23) are ML in this case.

8. SIMULATION RESULTS

We study the performance of the pseudo ML estimator in
(23) through Monte-Carlo simulations. The amplitude sig-
nal s(t) is a zero-mean stationary AR(1) process with re-
gression parameter a. We keep its power �2s �xed and vary
a; which controls the bandwidth of s(t). Here, we limit the
simulations to the harmonic signal case, i.e., �(t) = '1t+'0;
additional simulation results are reported in [4]. The pa-
rameters were set to '1 = 0:4� and '0 = 0:2�. Table
1 displays the Relative E�ciency (RE) of the frequency
estimator in (23) for di�erent values of a and N when
SNR = 2. The MSEs of the estimators were evaluated
using 1000 Monte-Carlo simulations. In the computation
of the RE, we used the exact CRB derived in Proposition
1. The last column of Table 1 displays the ARE computed
using Propositions 2 and 3. For an AR(1) process with
parameter a, � in eq. (14) is given by [4]

� = 2SNR �
2R2(1� a2)q

[2R2(1� a2) + (1 + a2)]2 � 4a2

which we used to compute the ACRB via (16). It is seen
that the theoretical expectations are met. In particular,
the RE is seen to exceed 0.8 for large number of samples,
as predicted by eq. (24).

N = 100 N = 200 N = 1000 ARE
a = �0:9 0:50 0:70 0:89 0:90
a = �0:5 0:76 0:88 0:97 0:97
a = 0 0:89 0:95 1:00 1:00
a = 0:5 0:88 0:91 0:97 0:97
a = 0:9 0:22 0:66 0:88 0:90

Table 1. RE(b'1) = CRB('1)=MSE(b'1)
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