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ABSTRACT

We present an algorithm for the detection of extra-solar planets by
occultation on the satellite COROT. Under high flux assumption,
the signal is modeled as an autoregressive process having equal
mean and variance. A transit of a planet in front of a star will
produce an abrupt jump in the mean/variance of the process. The
Neyman-Pearson detector is derived when the abrupt change pa-
rameters are known. The theoretical distribution of the test statistic
is obtained allowing the computation of the ROC curves. The gen-
eralized likelihood ratio detector is then studied for the practical
case were the change parameters are unknown. This detector re-
quires the maximum likelihood estimates of the parameters. ROC
curves are then determined using computer simulations.

1. INTRODUCTION

The small French satellite COROT (CNES) is dedicated to stellar
asteroseismology and extra-solar planetary detection. The further
is based on the possible transit of a planet in front of a star, which
will produce a decrease of the photometric signal from the star,
proportional to the ratio of the planet to the star surface, during
the time of the transit. The photometric signal is recorded on a
CCD camera. This communication addresses the planet detection
problem.

Section 2 presents the signal model. A simplified model is
then developed under the high flux assumption. For this model, the
Neyman-Pearson detector for the abrupt change (AC) detection is
studied in section 3. The exact distribution of the test statistic is ob-
tained, allowing computation of ROC curves. Section 4 deals with
the practical application where the AC parameters are unknown.
The generalized likelihood ratio detector is derived. Consequently
maximum likelihood estimators of the AC parameters are deter-
mined.

2. SIGNAL MODEL DERIVATION

We assume that the signal is dominated by the photon noise i.e.
the read-out noise and the thermal noise for the electronic are neg-
ligible. In the ideal sensor case, the problem consists of detecting
a jump in the mean� of an iid signalxn having a Poisson distri-
bution.

Denote asr the step instant:

� 8n 2 S0 = [1; r] : � = �0;
8n 2 S1 = [r + 1; N ] : � = �1 (< �0):

(1)

The AC detection problem is:�
H0 : S1 = ; (no jump),
H1 : S1 6= ; (jump).

(2)

The Neyman-Pearson detector (NPD) can be easily computed
for this problem and yields:

H0 rejected if
1

N � r

NX
n=r+1

xn < �: (3)

The problem is more complicated when the detector is not perfect,
and in particular if its sensitivity changes with time. In this case,
the parameter� is replaced by a random variable�n having a mean
�, subjected to a jump. The distribution ofX = fx1; : : : ; xNg
conditioned on� = f�1; : : : ; �Ng is an iid sequence with Pois-
son distribution of parameter�. The unconditioned distribution of
X is:

p(X) =

Z
�

p(X=�)p(�)d� (4)

=

Z
�

NY
n=1

e��n�xnn
xn!

p(�)d�; (5)

referred as the Poisson Mandel transform ofp(�), [7].
An a priori distribution for� is very difficult to choose. More-

over, the derivation of the test for (2) requires the computation of
the resulting distribution ofX using (5) which is generally a very
complicated task. For these reasons, a simpler model forX is pro-
posed using two realistic assumptions:

var[�n] � E[�n]; E[�n] = �� 1: (6)

The first assumption conveys the fact that the variations of the sen-
sor are small. The second traduces a high flux assumption. A
fundamental consequence is that under mild assumptions on the
distribution of�, X is approximately Gaussian distributed. This
property can be proved by relating the characteristic function ofX
to the characteristic function of� using (5) (see [7]). For example
when� is Gaussian distributed with meanm, the characteristic
function ofX tends to the Gaussian characteristic function when
m tends to infinity, [3].

Using conditional expectation, the mean and variance ofxn
can be determined:

E[xn] = E[E[xn=�n]] = E[�n] = �: (7)

var[xn] = E[x2n]� �2 = E[E[x2n=�n]]� �2

= E[�n + �2n]� �2 = �+ var[�n] � �; (8)



the last approximation coming from the above assumption on the
sensor.

Consequently, the distribution ofX can be approximated by
a corelated Gaussian distribution having same variance and mean
�. This paper proposes to modelxn as an autoregressive process.
Classical justifications for this model in the stationary Gaussian
context can be found for example in [5]. Assume thatxn is apth

order autoregressive process with equal mean and variance�:

xn = �
pX

k=1

akxn�k + �(1 +

pX
k=1

ak) + en; (9)

whereen is an iid zero mean Gaussian sequence.
It is important to note that in the perfect sensor case, the high

flux assumption implies that the Poisson distribution tends to a
Normal distribution with same mean and variance, [2]. This par-
ticular case corresponds to8k, ak = 0 in (9). A major effect of
the detector imperfections will be to correlate the signal measure-
ments.

The variance ofen in model (9) is such thatvar[xn] = �.
In order to take into account its dependence toward theak and
�, it will be denoted�2e(a; �) in the sequel. An analytic expres-
sion of �2e(a; �) is very difficult to obtain. A formal expression
can be obtained by rewriting the Yule Walker equations, [6], as
a linear system where the unknowns are the signal covariances,
c = (�; c(1); : : : ; c(p))t. This leads to:

(A1 +A2)c = (�2e(a; �); 0; : : : ; 0)
t; (10)

with,

A1 =

0
BBBBB@

1 0 0 � � � 0
a1 1 0 � � � 0
a2 a1 1 � � � 0
...

...
...

...
ap ap�1 � � � a1 1

1
CCCCCA

A2 =

0
BBBBB@

0 a1 � � � ap�1 ap
0 a2 � � � ap 0
...

...
...

0 ap 0 � � � 0
0 0 � � � 0 0

:

1
CCCCCA

We then obtain:

�2e(a; �) = ��2e(a; 1); (11)

where�2e(a; 1) is the inverse of the upper left element of the matrix
(A1 +A2)

�1.

3. THE NEYMAN PEARSON DETECTOR

This section derives the Neyman Pearson Detector (NPD) for prob-
lem (2), whenxn is an AR process defined in (9). AC detection
and estimation for linear models has been studied for long time
(see [1, 4] and references therein for an overview). The new con-
tribution here is the development of a detection scheme in the par-
ticular case where the jumps occurs on the mean/variance of the
signal. The study is restricted to off-line change detection algo-
rithms, [1].

In [8], the author studies the case of a non zero mean au-
toregressive signal multiplied by a sigmoidal function modeling a

jump. However, even if this model represents a jump in the mean
and the power of an AR process, it can be easily check that it
cannot handle the case where mean and variance are equal. This
constraint, as it will be shown below simplifies substantially the
test statistic.

DenoteL(X=H1) the log-likelihood function offxp+1; : : : ;
xNg conditioned onfx1; : : : ; xpg under hypothesisH1. After
dropping the constant terms, we have:

L(X=H1) = �(N � p) log �2e(a; 1)

� (r � p) log �0 � (N � r) log �1

� 1

�2e(a; 1)
(
1

�0

rX
n=p+1

e2n;0 +
1

�1

NX
n=r+1

e2n;1); (12)

where:

en;i = xn +

pX
k=1

akxn�k � �i(1 +

pX
k=1

ak): (13)

The log likelihood function under hypothesisH0 is readily ob-
tained from (12):

L(X=H0) = �(N � p) log �2e(a; 1)� (N � p) log �0

� 1

�2e(a; 1)�0

NX
n=p+1

e2n;0: (14)

After simplification and using the hypothesis�1 < �0, the
Neyman-Pearson test reduces to:

T =
1

N � r

NX
n=r+1

(xn +

pX
k=1

akxn�k)
2
H0

?
H1

�: (15)

It is important to note that when a jump occurs independently
on the mean and the variance of the process, [8], the test statistic
T is the difference of two positive definite quadratic forms that is
generally indefinite. The exact distribution ofT is very difficult
to study in this case and has been approximated by a Gaussian
distribution in [8]. In this paper, because of the constraint (11),T
reduces to a single positive definite quadratic form.

Another noteworthy point is thatT is not function of�0 and
�1. Moreover, in the iid case,T reduces to the estimated power of
xn whereas in the Poisson caseT is the estimated mean (3).

Under hypothesisHi, T is the sum of the square ofN � r
independent Gaussian random variables with:

� mean�i(1 +
Pp

k=1 ak)=
p
N � r,

� variance�2e(a; �i)=(N � r).

Consequently(N � r)T=�2e(a; �i) is distributed as a non central
�2 distribution withN � r degrees of freedom and non-centrality
parameter:

�i =
(N � r)(1 +

Pp

k=1
ak)

�e(a; 1)
: (16)

The distribution ofT is:

pT (t=Hi) =
N � r

�2e(a; �i)
f(

N � r

�2e(a; �i)
t); (17)
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Figure 1: ROC curves for the NPD.�0 = 1000, p = 1, a1 = 0:2,
N � r = 10 and�1 = 850, 900, 950.

where:

f(t) =
1

2
(t=�i)

N�r�2
4 IN�r�2

2

(
p
�it)e

�

�i+t

2 (18)

andI�(x) is the modified Bessel function. It is worthy to note that
�i and consequentlyf(t) do not depend of�i. The dependence
versus�i occurs only through�2e(a; �i) in (17).

In order to evaluate the performances of the NPD and the in-
fluence of the various parameters, ROC curves have been plotted
from (17). Figure (1) shows the ROC curves for�0 = 1000,
p = 1, a1 = 0:2, N � r = 10 and different values of�1. Fig-
ure (2) shows the ROC curves when�0 varies and the amplitude
of the jump equals 10% of�0. The curves show that the perfor-
mances increase with�0. To explain this result define the “snr”
as the ratio between the mean squared and the variance of the sig-
nal. The signal model implies that this snr equals�i under each
hypothesis. Consequently, in this simulation, as�0 increases the
overall “snr” and the width of the jump when both increase. Fi-
nally, figure (3) studies the effect of the signal correlation on the
detection performances. The performances increase with the sig-
nal correlation, as it could be predicted.

4. GENERALIZED LIKELIHOOD RATIO DETECTOR

The optimal NPD gives a reference to which suboptimal detec-
tors can be compared. However, it requires a priori knowledge
of the abrupt change parameters�1 and r (the parametersak,
k = 1; : : : ; p and�0 are assumed to be known). Otherwise, it
can be replaced by the Generalized Likelihood detector (GLRD)
obtained by the ratio of the supremum of the likelihood function
with respect to the unknown parameters under both hypothesis.

This solution requires the computation of the Maximum Like-
lihood Estimatior (MLE) of�1 andr. Whenr is known the MLE
of �1, denoted̂�1(r), is obtained by setting the partial derivative of
L(X=H1) with respect to�1 to zero. Straighforward calculations
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Figure 2: ROC curves for the NPD.p = 1, a1 = 0:2,N � r = 10
and (�0 = 1000; �1 = 900), (�0 = 500; �1 = 450), (�0 =
100; �1 = 90).

yield:

(1 +

pX
k=1

ak)
2�21 + �2e(a; 1)�1

� 1

N � r

NX
n=r+1

(xn +

pX
k=1

akxn�k)
2 = 0: (19)

The two roots of this second order polynomial being obviously
of opposite sign, an analytic expression of�̂1(r) is given by the
positive root of (19).

This result suggests the following remarks:

� In the Poisson iid case, the MLE of�1 equals the sample
mean. In our case,�1 could obviously also be estimated by
the sample mean or the sample variance of the process with
a variance of the estimate in both case that isO(1=N), [5].
For example, for the process (9) the corresponding mean
MLE estimator is:

�̂1 =
1

N � r

NX
n=r+1

xn +
Pp

k=1
akxn�k

1 +
Pp

k=1
ak

(20)

However, these solutions do not take into account the par-
ticular constraintE[xn] = var[xn], see (7,8).

� An estimator of the variance�1 is the difference between
estimated signal second order moment and the mean squared:
�2, in this case. Reordering the terms, we obtain that an es-
timate of�1 is given by the positive solution of

�21 + �1 � 1

N � r

NX
n=r+1

x2n = 0: (21)

It can be easily checked that in the uncorrelated case,8k,
ak = 0, equation (19) reduces to (21).
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Figure 3: ROC curves for the NPD.p = 1, N � r = 10, �0 =
1000, �1 = 900, anda1 = 0, 0.2, 0.5.

Finally, in order to obtain̂r, the expression of̂�1(r) obtained
from (19) is replaced in (12). The resulting criterion is evaluated
for r in [p+1; N�1]. The global maximizer is retained asr̂ and�̂1
equalŝ�1(r̂). This two quantities are then replaced inL(X=H1)�
L(X=H0) and the resulting value is compared to a threshold.

The GLRD ROC curves are depicted in figure 4 forp = 1,
a1 = 0:2,N = 512, r = 412, �0 = 1000 and for different values
of �1 (700, 800 and 900). This figure is obtained using for each
value of the threshold, corresponding to a cross, 500 independent
signal realizations. Comparison between figure 1 and 4 shows that
the well known loss of performances of the GLRD compared to
the NPD, can be compensated by an increase of the samples under
hypothesisH1.

We have assumed through all this section that the parameters
�0 andak, k = 1; : : : ; p, are known. They could be included in
the GLR test. However, their estimation relies on a calibration pro-
cedure that is performed independently of the detection. For this
scope, the solution that as been retained is the MLE. In the same
manner as above, the log likelihood function underH0 is first max-
imized with respect to�0 and the resulting criterion is maximized
with respect to parametersak with a numerical method. Simula-
tions have shown that good performances are obtained when the
initial conditions for theak are the unconstraint Yule Walker solu-
tion.

5. SUMMARY AND CONCLUSIONS

This communication proposed an algorithm for detection of extra-
solar planets by occultation under high flux assumption. We demon-
strated that this problem can be modeled as the detection of abrupt
change in the variance/mean of a Gaussian autoregressive process
having equal mean and variance. For this model, contrary to the
general unconstraint case, the theoretical distribution of the test
statistic for the Neyman-Pearson detector can be obtained. Maxi-
mum likelihood estimators for the abrupt changes parameters were
derived in order to implement a generalized likelihood detector.
Performances of this detector were obtained by computer simula-
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Figure 4: ROC curves for the GLRD.p = 1, a1 = 0:2, N = 512,
r = 412, �0 = 1000 and�1 = 700, 800, 900.

tions.
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