
NONLINEAR PREDICTION OF MOBILE RADIO CHANNELS:

MEASUREMENTS AND MARS MODEL DESIGNS

Torbj�orn Ekman1� Gernot Kubin2

1 Signals and Systems Group, Uppsala University, Pb 528, SE-751 20 Uppsala, Sweden (torbjorn.ekman@signal.uu.se)
2 Institute of Communications and Radio-Frequency Engineering, Vienna University of Technology

Gusshausstrasse 25 /389, A-1040 Vienna, Austria (g.kubin@ieee.org)

ABSTRACT

The rapid time variation of mobile radio channels is often
modeled as a random process with second order moments
re
ecting vehicle speed, bandwidth and the scattering envi-
ronment. These statistics typically show that there is little
room for prediction of channel properties such as received
power or complex taps of the impulse response coe�cients,
at least when linear predictor structures are considered.
We use mutual information estimation to measure statis-
tical dependencies in sequences of wideband mobile radio
channel data and �nd signi�cant nonlinear dependencies,
far exceeding the linear component. Based on these upper
limits for the predictability of channel evolution over time
intervals up to 30 ms ahead, we develop practical nonlinear
predictor systems using Multivariate Adaptive Regression
Splines (MARS). We demonstrate computationally e�cient
schemes that increase the prediction horizon beyond 10 ms,
compared to less than 4 ms with linear predictors at com-
parable prediction gains.

1. INTRODUCTION

Time variation of a mobile radio channel is induced by
movement of a mobile transceiver through an environment
with scatterers. The mobile travels through an interference
pattern that causes fading. It is reasonable to assume that,
within some small local area or time frame, the scattering
geometry is time invariant. A low-dimensional determinis-
tic mapping may thus exist from the channel transmission
properties measured at one time instance to the same prop-
erties measured a moment later, when the mobile has moved
a short distance.
A common approach is to assume that a large number

of horizontal planar waves with vertical polarization arrives
at the receiver from di�erent directions in a plane [1]. The
degree of complexity quickly grows when changing polariza-
tions, di�erent elevation angles and non-planar waves are
taken into consideration. Instead of trying to parameter-
ize the physics, we view the process as a dynamical system
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producing an observed time series at its output. For the
mobile radio channel, this can be either a sequence of re-
ceived power measurements or sequences of estimates of a
single or multiple coe�cients of the time-varying impulse
response.
One of the powerful results from the theory of determin-

istic dynamical systems is Takens embedding theorem [2],
which allows the reconstruction of a state space represen-
tation from a scalar signal alone. As a precondition, this
signal must have been observed from the output of a dynam-
ical system in steady state motion on a �nite-dimensional
manifold in its state space (i.e. on an attractor). The recon-
struction is achieved by combining several lagged samples
of the signal into a signal vector whose dimension is more
than twice the attractor dimension. Following the trajec-
tory of this vector over time, the state space evolution is
reconstructed in this embedding space, allowing us to an-
alyze and model many signal properties the same way as
when using physical state space coordinates.
In this paper we study how far ahead in time the re-

ceived power and the complex taps of the impulse response
are predictable. This information is important for adap-
tive resource allocation and power control but could also
be used for adaptive coding/modulation and equalization
schemes. Mutual information measurements on measured
channel impulse responses and on the received power pro-
vide upper bounds on the achievable prediction gain (PG).
Linear and nonlinear predictors are tested on measurements
to �nd practical measures on the achievable PG for di�er-
ent prediction intervals. Neural nets have been proposed
for power prediction in wideband systems and have been
demonstrated to perform better than linear predictors [3]
for 1 ms horizons, whereas we go to 10-30 ms. Here we use
MARS models [4] as the nonlinear systems used to identify
the dynamical characteristics of the channel.

2. AN UPPER BOUND ON THE

PREDICTION GAIN

In prediction of a discrete time series yt, the values of yt+L
are forecasted using present and past values, represented
by the vector yt = [yt; yt��1 ; : : : ; yt��p�1 ]. A predictor es-
timates yt+L as

ŷt+Ljt = f̂ (yt): (1)

The prediction error is given as the di�erence between ob-
served and predicted values

et = yt � ŷtjt�L: (2)



The PG G(L) is the ratio between the variance of yt and
the power of the resulting error et

G(L) = 10 log10
Ef(yt �my)

2g

Efe2tg
(3)

measured in dB. Here my denotes the average value of the
time series, my = Efytg. Under the assumption of station-
arity a tight upper bound on G(L) for an unbiased predictor
is given by [5]

G(L) � Gmax(L) = 6:02(I(yt+L;yt) +�) (4)

where

� =
1

2
log2(2�eEf(yt �my)

2g)�H(yt) (5)

is the di�erence between the di�erential entropy of a Gaus-
sian variable with the same variance as yt and the �rst-
order entropy, H(yt). The mutual information I(yt+L;yt)
is a measure of how much information the vector yt con-
tains about the value to be predicted, yt+L [6]. Gmax(L) is
a tight upper bound on the PG for any predictor forecast-
ing yt+L using yt. Both the di�erential entropy H(yt) and
the mutual information I(yt+L;yt) can be estimated from
a single realization of a stationary ergodic process using the
fast algorithm described in [7].

3. MARS MODELS

Multivariate Adaptive Regression Splines (MARS) have
been proposed by Friedman [4] to build models of the re-
lationships between a scalar response variable and multi-
ple regression variables. Lewis and Stevens [8] used MARS
for nonlinear threshold modeling of time series. For a pre-
dictor, the response variable is chosen as yt+L and the
regression variables are delayed values of the time series,
yt = [yt; yt��1 ; : : : ; yt��p�1 ]. To build the MARS model,
the multi-dimensional regression variable space is parti-
tioned into subregions by recursive one-dimensional splits
where each split is associated with a one-dimensional, linear
spline function. Unlike set-theoretic partitions, the subre-
gions may overlap due to their speci�c (suboptimal) itera-
tive construction: at each iteration step, all available sub-
regions are split along all dimensions (one at a time) and
only the one re�nement that provides the greatest increase
in regression accuracy is retained. The basis function for a
subregion is formed by multiplication of all the associated
splines. In mathematical terms the model is described as
below. Assume that yt+L can be described by the regression
model

yt+L = f(yt) + �: (6)

The MARS estimate of the unknown function f(yt) is

f̂(yt) = a0 +

MX

m=1

amBm(yt) (7)

where f̂(yt) is a sum of weighted basis functions, fBmg, as-
sociated with subregions fmg. A basis function is formed by
multiplication of truncated linear spline functions fTm;lg:

Bm(yt) =

KmY

l=1

Tm;l(yt) (8)

where Km is the level of interaction for the basis function of
region m, describing how many truncated splines are used
to build Bm. Each truncated linear spline function Tm;l

works along one dimension only (that is one delay �v) and
has a partitioning point at yt��v = tm;l, partitioning the
regression variable space:

Tm;l(yt) = [sm;l(yt��v � tm;l)]+ (9)

where sm;l = �1 gives the left or right side of the knot
tm;l. In (9), [�]+ denotes the half-wave recti�er function,
i.e. it takes the value of the argument if it is positive and
is zero otherwise. For sm;l = +1, Tm;l(yt) is positive for
yt��v � tm;l > 0 and zero otherwise. For sm;l = �1 the
inequality is turned the other way. The MARS algorithm
iteratively builds up the model structure (by enlarging the
set of subregions while proceeding to higher levels of inter-
action among regression variables) and adjusts the thresh-
olds (tm;l) and weighting coe�cients (ai) to �t the data,
minimizing the mean-squared error.
The models are continuous input-output maps and can

handle linear systems as well as nonlinear systems with
more complex behavior such as limit cycles etc. MARS
models are more e�cient than neural networks (NN) such
as standard multi-layer perceptrons with backpropagation
for several reasons: they include a bottom-up strategy to
build up the model structure until a certain level of accu-
racy is achieved (with `optimal' interaction of inputs rather
than pruning a highly redundant, fully interconnected NN),
they are good in approximating (locally) linear mappings,
their digital implementation is very simple and computa-
tionally e�cient (only hard thresholds and multiply/adds,
no sigmoids involving transcendental functions). A predic-
tor based on a MARS model with the highest level of in-
teraction set to K and no more than M basis functions
has at most M(K + 1) + 1 additions, M(K + 1) multipli-
cations, MK threshold operations and uses no more than
M(K + 1) + 1 parameters.

4. EXPERIMENTS AND RESULTS

4.1. Measurements

Wideband radio channel measurements were performed at
1880 MHz, at distances of 200 to 2000 m from the base sta-
tion antenna placed on a high roof-top. The mobile antenna
was placed on a car driving in a suburban environment
mostly at non-line of sight. Vehicle speed varied between 30
to 90 km/h. A total of 30 measurement runs were recorded
at di�erent positions. The measurements consisted of a re-
peatedly transmitted sequence of length 109 �s, resulting
in 156 ms continuous received signal at each measurement
location. The baseband sampling rate of the receiver was
6.4 MHz.
The impulse response is estimated using a 120 tap FIR-

model, covering 18.75 �s, which is �tted by least squares
to each repeated sequence. For the identi�cation, the sig-
nal from a back-to-back measurement is used as reference.
This resulted in 1430 consecutive complex impulse response
estimates at each measurement location. The method of
identi�cation is unbiased even when the noise is colored
and it is chosen to give estimates with low variance for the
dominant taps. In 25 out of the 30 measurement runs, the



largest peak of the power delay pro�le is at least 20 dB
over the noise 
oor. Only those runs are retained for fur-
ther analysis and modeling.
Three di�erent bandwidths are examined, 5, 2.5 and 1.25

MHz, all wideband. The di�erent bandwidths are achieved
by �ltering and subsampling. The resulting sampling rates
are 6.4, 3.2 and 1.6 MHz respectively, for the three consid-
ered bandwidths.

4.2. Power Prediction

For prediction of the received power, a MARS model and
two linear predictors are compared. In all the experiments
the state variable vectors spans 15 ms which corresponds
to a memory of 137 samples and the prediction interval L
is varied from 1 ms up to 10 ms. All prediction experi-
ments are done on detrended data with zero average. The
MARS model for the power uses 6 delayed signal samples,
uniformly spaced over the 15 ms memory, as regression vari-
ables. The maximum number of basis functions are 20 and
the level of interaction 3. This structure is chosen to be rich
enough to model a great variety of fading patterns. Linear
predictors are two FIR �lters, using either all 137 samples
in the memory or only the 6 samples used by the MARS
model.
To get an estimate of how predictable the time series are,

the mutual information between the power at t+L and two
delayed measurements yt = [yt; yt�T ] is estimated. The
reason to use only two delays is to keep the accuracy of the
mutual information estimate high and still have the extra
structural information the second delay gives. Using (4) an
upper bound on the PG for any predictor using two lagged
variables within the memory is estimated. The delay spac-
ing T is chosen to give the highest PG within the memory
(T � 15 ms). In Fig. 1, the average of the optimal de-
lay spacing is presented for the di�erent bandwidths and
prediction intervals. Even though the prediction interval
increases from 1 ms to 30 ms the average delay spacing giv-
ing the highest PG increases less than 5 ms. Thus when
the prediction interval is increased the memory size does
not have to increase accordingly.
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Figure 1. Average delay spacing over all measurements giv-
ing the highest PG for the power, estimated with the mutual
information algorithm.

As seen in Fig. 2 the long linear �lter has higher PG for
short prediction intervals than the other predictors. This

is because the long linear �lter captures the local smooth-
ness, which the subsampled short FIR �lter and the MARS
model are unable to do. Going to longer prediction inter-
vals the dynamics of the system becomes important and the
MARS predictor outperforms the linear predictors. The PG
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Figure 2. Average PGs for the power at 1.25 MHz band-
width, using mutual information estimate of PG with two de-
lays, MARS predictor (6 input variables), long linear predictor
(137 inputs) and the short linear predictor (same 6 inputs as
MARS).

bound for predictors using two lagged variables, estimated
through the mutual information, �rst drops 3-4 dB when
the prediction interval is increased from 1 to 4 ms and then
remains fairly constant (also seen in Fig. 3). This indicates
that when the dynamics are known it is possible to increase
the prediction interval with only a small loss of accuracy.
The drop in the PG bound when reducing the bandwidth
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Figure 3. Average PG bound for the power over all power
measurements, estimated from mutual information using two
delays.

is due to the deeper fades and more rapid changes for lower
bandwidths.

4.3. Prediction of Channel Parameters

Predictors for the largest taps in the complex impulse re-
sponse, for each of the 25 measurements, are designed and
tested. The number of taps used decreases with the band-
width from 9 taps for 5 MHz to 5 taps for 1.25 MHz.



For MARS modeling of the complex taps, two models
have to be built, one each for the real and imaginary parts.
Both models use the same input of 6 delayed measurements
of a single complex tap, separated in real and imaginary
parts, resulting in 12 inputs. The 6 delays are uniformly
spaced over the memory. The maximum number of ba-
sis functions are 20 and the level of interaction 2, allowing
for multiplicative interactions. On average 57 real-valued
parameters are used by the MARS predictor. The linear
predictors have the same structure as for power prediction.
Here the use of complex signals results in predictors with
either 137 or 6 complex parameters. Not only the complex
coe�cients are predicted, also the power of the taps , that is
the squared magnitude of the coe�cients, are predicted as
shown in Fig. 4. The MARS prediction captures the fading
pattern even though the prediction interval is as long as 10
ms, which is more than the typical duration of a fade.
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Figure 4. True and predicted squared magnitude (PG is 5.8
dB) for the largest tap in one measurement at 5 MHz band-
width. The predicted power is calculated from the complex
tap, predicted 10 ms ahead with a MARS predictor. The
memory (solid line) and prediction interval (dotted line) are
indicated in the lower left corner.
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Figure 5. Average PG for the measured complex taps at 1.25
MHz bandwidth. Mutual information estimate of PG with
two delays, MARS predictor, linear predictor and a short linear
predictor using the same delayed variables as the MARS model.

The PG for the di�erent coe�cient predictors have a sim-
ilar behavior as the power prediction (see Fig. 5). The
MARS predictor on average gives 3-4 dB higher PG than
the long linear predictor for prediction intervals of 10 ms,
and the mutual information measurements indicate that it
should be possible to gain signi�cantly more with the right
choice of nonlinear structure.

5. CONCLUSIONS

A nonlinear approach to prediction of received power and
the complex coe�cients in the impulse response of a mobile
radio channel is proposed. MARS models, using only a few
inputs from the memory of the signal, are able to capture
the dynamics of the fading channel better than linear �lters
using all samples in the same memory. It is possible to pre-
dict received power and channel coe�cients in the impulse
response 10 ms ahead at prediction gains averaging around
6 dB for the power and 9-11 dB for the channel coe�cients
(the higher value is for 5 MHz bandwidth), at frequencies in
the 1800 MHz band. Mutual information measurements on
measured impulse responses and power indicate that even
higher PG and longer prediction horizon should be attain-
able.
As the MARS predictor has a low complexity, comparable

to a linear predictor, it is possible to use it on line. The
updating of the model is more computationally demanding
but can be done at a lower rate. How often the model has
to be updated is a question for further research.
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