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ABSTRACT
Acoustic echo cancellers in today's speakerphones or vi-
deo conferencing systems rely on the assumption of a linear
echo path. Low-cost audio equipment or constraints of por-
table communication systems cause nonlinear distortions,
which limit the echo return loss enhancement achievable by
linear adaptation schemes. These distortions are a super-
position of different effects, which can be modelled either
as memoryless nonlinearities or as nonlinear systems with
memory. Proper adaptation schemes for both cases of non-
linearities are discussed. An echo canceller for nonlinear
systems with memory based on an adaptive second order
Volterra filter is presented. Its performance is demonstra-
ted by measurements with small loudspeakers. The results
show an improvement in the echo return loss enhancement
of 7 dB over a conventional linear adaptive filter. The addi-
tional computational requirement for the presented Volterra
filter is comparable to that of existing acoustic echo cancel-
lers.

1. INTRODUCTION

The typical setup for acoustic echo cancellation is shown
in Fig. 1. The linear part of the echo path is represented
by h[k], the digital counterpart of the echo path's impulse
response. The microphone signaly[k] contains the linear
echod[k] = x[k] � h[k] and additional signal components
of different nature, denoted byn[k]. Irrespective of their
nature, the adaptive filter̂h[k] can be adjusted such thatd[k]
is cancelled arbitrarily well, e.g. with the NLMS algorithm
[1]. Then the transmitted signale[k] closely resemblesn[k].

If n[k] contains not only local speech but alsononlinear
echo components, caused by distortions of the audio equip-
ment, then additional adaptation measures have to cancel
these echo components, as they cannot be cancelled by the
linear filter ĥ[k]. These measures depend on the kind of
nonlinearities encountered in the transmission chain shown
in Fig. 2.

The main source of nonlinearities is found in part (B),
since the loudspeaker and the power amplifier are operated
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Figure 1: linear adaptive filter for acoustic echo cancellation
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Figure 2: nonlinear echo path

at the highest signal level of the transmission chain. This
part of the system is assumed to be weakly time-variant
(wTV), e.g. due to temperature drift. The acoustic echo path
(C) is known to be linear and time-variant (LTV), while the
microphone and the amplifier (C) can be modeled as LTI
systems because of their low signal amplitudes. Also the
nonlinear quantization of the A/D and D/A converters can
be neglected in this context.

If nonlinear distortions are mainly caused by an overdri-
ven amplifier, they are approximately memoryless and can
be modeled by a saturation curve [1, 2]. Two existing ap-
proaches, which are specialized on this type of nonlinearity,
are discussed in section 2.

Another kind of nonlinearity is caused by the loudspeaker
[3]. Due to the long time constants of the electro-mechanical
system, the memory of this nonlinear behaviour cannot be
neglected, see section 3.2. When the speaker is operated at
its power limit, the nonlinear distortions will impair echo
cancelling by linear filters. In [4] a neural network is used
as nonlinear system with memory. With a cascade of a time-
delay neural network and an adaptive FIR filter, considera-



ble improvement of nonlinear echo reduction is achieved. A
disadvantage is the need for a second reference microphone
to provide an error signal for the adaptive neural network.
In [8] adaptive Volterra filters have been proposed for line
echo cancelling. However, due to their high numerical com-
plexity they have not been used in practical systems yet.

In this paper, we develop an acoustic echo canceller with
a second order adaptive Volterra filter and propose a method
that keeps the computational complexity modest. After re-
viewing some fundamentals of adaptive Volterra filters in
section 3.1, we discuss in section 3.2 how to reduce the
number of Volterra coefficients required to model systems
as shown in Fig. 2. Based on measurements with small
loudspeakers, in section 3.3 we propose a nonlinear acou-
stic echo canceller structure with reduced complexity. Fi-
nally experimental results with a small loudspeaker and a
one-chip amplifier are presented in section 3.4.

2. ACOUSTIC ECHO CANCELLERS WITH
MEMORYLESS NONLINEAR MODEL

Acoustic echo cancellers consisting of a cascade of linear
systems and memoryless nonlinear systems have already
been proposed.

In [2], parts (A) and (C) of Fig. 2 are modelled with
adaptive FIR filters and part (B) is realized by a saturation
curve with one adaptive parameter. The adaptation of part
(A) costsO(N2) multiplications,N being the number of
coefficients. Local minima of the error surface cause pro-
blems, but with a special inititalization of the adaptive coef-
ficients, as much as 8 dB ERLE improvement over a linear
adaptive filter are reported.

In [1] part (A) is modelled as a delay, part (B) is repre-
sented by a7th order polynomial with time-invariant coeffi-
cients, and part (C) is a standard NLMS adaptive filter. With
only 14 additional multiplications per sample an ERLE im-
provement of 4 dB is obtained, without affecting conver-
gence properties of the adaptive filter.

With both systems, the good results can only be obtai-
ned if the major cause of nonlinearities is a clipping am-
plifier. In many non-portable applications, like PC telepho-
nes or videophones, the power amplifier is not necessarily
overdriven, but it is still desirabe to operate a small, cheap
speaker at its power limit. Therefore we propose a nonlinear
echo canceller which works well in this case.

3. ACOUSTIC ECHO CANCELLER FOR
NONLINEARITIES WITH MEMORY

3.1. Adaptive Volterra Filters

In [5] the representation of nonlinear systems by truncated
volterra series expansions is discussed and adaptation algo-

rithms for second order Volterra filters are given. AnN -th
order discrete Volterra filter with inputx[k], outputy[k] and
memory lengthM can be described as

y[k] =
NX

r=1

MX

�1=0

� � �
MX

�r=�r�1

hr [�1; � � � ; �r] �

�x[k� �1] � � �x[k� �r] ; (1)

wherehr are ther-th order volterra kernels. [6] shows that
Volterra kernels are symmetric, which is exploited in (1)
by considering only coefficients with non-decreasing indi-
ces�r, i.e. �r � �r�1. With the vectors

x1[k] = (x[k]; x[k� 1]; � � � ; x[k�M + 1])

and
ĥ1 =
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ĥ1[0]; ĥ1[1]; � � �; ĥ1[M � 1]

�

for the first order volterra kernel, and

x2[k] =
�
x2[k]; x[k]x[k� 1]; � � � ; x[k]x[k�M + 1];
x[k� 1]x[k� 1]; � � � ;
x[k�M + 1]x[k�M + 1]
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and

ĥ2 =
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ĥ2[0; 0]; ĥ2[0; 1]; � � �; ĥ2[0;M � 1];
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for the second order volterra kernel, the LMS adaptive Vol-
terra filter can be formulated as

e[k] = y[k]� ĥ1[k]x1
T [k]� ĥ2[k]x2

T [k] (2)

ĥ1[k+ 1] = ĥ1[k] + �1 e[k]x1[k] (3)

ĥ2[k+ 1] = ĥ2[k] + �2 e[k]x2[k] (4)

As in the linear NLMS algorithm, we normalize the stepsize
with respect to the power of the input vectorsx, and obtain
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2
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: (5)

with stepsize parameters�1 and�2. If symmetry is ex-
ploited, the second order kernel has1

2
M (M + 1) elements.

Thus the computational complexity of the second order ker-
nel is 3

2
M2 + 3

2
M + 2 multiplications per sample, if it is

adapted by the NLMS algorithm, while a linear NLMS ad-
aptive filter costs2M + 2 multiplications per sample.

3.2. Discussion of second order memory length

As we do not use a cascade of nonlinear and linear systems,
the memory length of the Volterra kernels is determined by
the whole transmission chain in Fig. 2. As known from li-
near acoustic echo cancellers, it is typically several hundred



taps. Due to the complexity ofO(N2), the memory length
of the second order Volterra kernel must be much less in a
practical application.

For analog audio systems where the linear component
dominates, the envelope of the higher order kernels is deter-
mined by the envelope of the impulse response [7]. As the
envelope of room impulse responses typically has a peak
and exponentially decays, we could ignore all coefficients,
which have a time index being “too far away” from the peak
of the impulse response. That this assumption is true for an
acoustic echo path with a highly excited small loudspea-
ker shows the following measurement in an anechoic cham-
ber. The first 50 taps of the impulse response, measured
with linear NLMS adaptive filter, is shown in Fig. 3. Fig. 4
shows the second order Volterra kernelĥ2[�1; �2], which
was identified using equations (2), (3) and (4) withM = 50.
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Figure 3: Linear FIR system with memory length 50

0
10

20
30

40
50 0 10 20 30 40 50

−0.03

−0.02

−0.01

0

0.01

0.02

 κ2

 κ1

  h
[κ

1,
κ 2

]

Figure 4: Second order Volterra kernel adapted from a small
loudspeaker

The zero elements in the upper half have not been used
for symmetry reasons. As expected, especially the first co-
efficients with time indices, at which the impulse response
is small, too, carry little information. Towards higher coeffi-
cient indices�1 or �2, the envelope of the volterra elements
decays in a similar way as the one of the impulse response,
but has relatively smaller values. Therefore the second or-

der kernel may be truncated to shorter memory length than
the linear kernel causing the same error power in the output
signal.

3.3. Proposed structure

Fig. 4 suggestes to ignore the first elements of the second
order volterra kernel until near the first peak in both dimen-
sions, i.e. �1 � �; �2 � �. In the example of Fig. 3
and Fig. 4 a good choice would be� = 17. This leads to a
modified second order Volterra representation with different
menory lengthM1 andM2:

y[k] =
M1�1X

�=0

h1[�]x[k� �] +

M2+��1X

�1=�

M2+��1X

�2=�1

h2[�1; �2]x[k� �1]x[k� �2] :

(6)
An adaptive Volterra filter of the above kind is shown

in Fig. 5. The NLMS adaptation algorithm for the linear
filter is given in (3) withM = M1. For the second order
Volterra kernel it is given in (4), where the vectorh2 must
be truncated toM = M2 � � andx2 must be delayed by
�.
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Figure 5: New nonlinear acoustic echo canceller

3.4. Experimental results

The new system has been tested with different low cost
speakers between0:1 and0:4 Watts and a one-chip ampli-
fier placed in an enclosure with low reverberation. As exci-
tationx[k] white Gaussian noise was used. The amplitude
was chosen so that the amplifier is not highly overdriven
and loudspeaker nonlinearities dominate over saturation ef-
fects. For performance evaluation of the new acoustic echo
canceller we use the Echo Return Loss Enhancement

ERLE=
Efy2[k]g

Efe2[k]g
:



3.4.1. Convergence behaviour

Fig. 6 shows a comparision between a conventional linear
acoustic echo canceller with NLMS algorithm (1) and the
new system (2). The parameters of the linear system were
chosen such that the excess ERLE is determined only by
nonlinear echo components. As in the test room no local
noise was present, this is achieved withM = 250 filter
coefficients and a stepsize� = 0:1. The parameters of the
new system wereM1 = 250, �1 = 0:1, M2 = 25, and
�2 = 0:05.
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Figure 6: ERLE with linear NLMS (1) and second order
Volterra filter (2)

The curves show, that convergence speed is not lowered
through the additional second order kernel, and steady state
ERLE is by5:5 dB higher. With the same experimental se-
tup, the memoryless nonlinear acoustic echo canceller [1]
could gain less than 1 dB the echo reduction over a conven-
tional linear echo canceller.

3.4.2. Complexity Considerations

As the complexity of the second order volterra kernel is
O(M2

2), its memory lengthM2 should be kept as small
as possible. The appropriate memory length depends on the
decay characteristics of the impulse response of the echo
path, the power of the nonlinear echo components, and the
desired ERLE gain. Table 1 compares different memory
lengthsM2 in terms of their complexity and the ERLE gain
achieved for the system examined above.

Table 1: ERLE gain with different memory lengthsM2

M2 5 10 15 20 25 30 35
ERLE gain [dB] 1.3 1.9 3.3 4.8 5.5 6.4 6.9

mult./sample 47 167 362 632 977 1397 1892

The third line shows the additional compexity (see sec-
tion 3.1) for the second order adaptive Volterra filter with
NLMS algorithm. The results show that second order Vol-
terra filters are appropriate to model small speakers operated
at high output power.

Today's linear acoustic echo cancellers require 500-1000
multiplications per sample. With additional costs in the
same order of magnitude, about 5 dB ERLE improvement
can be achieved. With some more computational power up
to 7 dB are gained.

4. SUMMARY

The performance of linear acoustic echo cancellers is limi-
ted by nonlinear components in the echo path. Acoustic
echo cancellers for memoryless nonlinearities, which are
specialized on saturation effects, have already been propo-
sed. However, loudspeaker nonlinearities cannot be model-
led without memory. The theory for adaptive Volterra fil-
ters, which can model nonlinearities with memory, is well
known, but those filters have not been applied sucessfully to
acoustic echo cancellation.

We propose a second order adaptive Volterra filter for
echo cancellation and a design rule for the choice of the
relevant coefficients. Practical implementations of systems
with different small loudspeakers operated at thier power
limit have been investigated. With modest computational
complexity an echo reduction improvement up to 7 dB over
linear adaptive filters can be achieved.
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