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ABSTRACT

Conventional gradient methods (optical flow), for motion
estimation assume intensity conservation between frames.
This assumption is often violated in real applications. The
remedy is a novel method that computes constraints on the
local motion. These constraint are given on the same form
as in conventional methods. Thus, it can directly substitute
the gradient method in most applications. Experiments in-
dicate a superior accuracy, even on synthetic images where
the intensity conservation assumption is valid. The conven-
tional gradient methods seem obsolete.

1. INTRODUCTION

Gradient methods[8], often referred to asoptical flow, are
widely used in motion estimation. The method assumes that
image intensity is conserved along a spatiotemporal path
along the motion. This assumption gives constraints on the
local motioncxvx+ cyvy + ct = 0, where(cx; cy; ct) is the
spatiotemporal gradient of image intensities and(vx; vy) is
the local motion. Local constraints can be integrated over
a region or the entire image to estimate any motion, e.g.
translation or affine.

Computing the spatiotemporal gradient does not require
more than two frames. Large motions can be accurately esti-
mated using multiple scales and iterative refinement, where
images are warped[10, 11].

The objective of this article is to introduce a novel method
to estimate(cx; cy; ct). It does not assume strict intensity
conservation, and accuracy is good even when there are in-
tensity variations between frames.
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2. PHASE BASED QUADRATURE FILTER
METHOD

Using quadrature filters phase is a relatively common ap-
proach in stereo algorithms[12, 5]. The idea of using phase
for motion estimation has previously been investigated by
some researchers [3, 1, 4], but to our knowledge, nobody
has tried this approach, which extends the accurate stereo al-
gorithms to track motions. Our method is basically a gradient-
based method with nonlinear preprocessing of the images.
To improve accuracy, a confidence measure has been added.

Definition 2.1 A filter is a quadrature filter[6] if its Fourier
transform,F (u), has zero amplitude on one side of a hyper-
plane through the origin, i.e. there is a direction̂n such that

F (u) = 0 8 n̂Tu � 0 (1)

Quadrature filter responses are closely related to analytic
signals. Note that quadrature filters must be complex in
the spatial domain. We only use filters that are real in the
Fourier domain.

2.1. Motion Constraint Estimation

A number of quadrature filters are applied in parallel on
each of the image frames, producing the same number of
filter responses. The quadrature filters are tuned in different
directions and frequency bands to split dissimilar features
into different filter responses, so that they do not interfere
in the motion estimation. The quadrature filters also sup-
press undesired features like DC value and high frequen-
cies. Unlike the conventional gradient method, our method
is not sensitive to low pass variations in image intensity, that
are frequent in medical X-ray images, or real world images
where shadows and illumination vary.



For each of the filter responses, we compute constraints
on the local motion.The first step is to convolve both of the
frames with quadrature filters

qA;j(x) = (fj � IA)(x) and qB;j(x) = (fj � IB)(x)
(2)

wherefj(x) is a quadrature filter andIA(x) andIB(x) are
image intensities of the two frames respectively. The phase
is defined as

�A;j(x) = arg qA;j(x) and �B;j(x) = arg qB;j(x)
(3)

In all ensuing computations, we must remember that phase
is always modulo2�, but for readability we omit this in
our formulas and notations. In most image points, the filter
responses are strongly dominated by one frequency, which
makes the phase nearly linear in a local neighbourhood.
When the phase is linear, it can be represented by its value
and gradient. Thus, a gradient method applied on the phase
will be very accurate. Of course, the phase is not always lin-
ear in a local neighbourhood, but that can be detected, and
reflected by a confidence measure.

For each point in the image, and for each quadrature fil-
ter response, a constraint on the local motion is computed.
To simplify notations, we drop the index,j, of the quadra-
ture filter.
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The motion constraint vector is the spatiotemporal gradient
of the phase, weighted by the confidence measure,C, which
will be introduced in next section.

2.2. Confidence Measure

Using a confidence measure is necessary to give strong fea-
tures precedence over weaker features and noise. In addi-
tion, it is necessary to avoid phase singularities[12, 9] which
occur when two frequencies interfere in the filter response.
These singularities must be discovered and treated as out-
liers. All this is done by assigning a confidence value to
each constraint. Our confidence measure is inspired by the
stereo disparity algorithm by Westelius [12], which in turn
is inspired by Wilson-Knutsson[2]. It is a product of several
factors, where the most important feature is the magnitude.

Our confidence measure for magnitude may seem com-
plicated at first glance. Except for suppressing weak fea-
tures, it is also sensitive to difference between the two frames.
This reduces the influence of structure that only exist in one
of the images, such as moving shadows, appearing objects

and other features not moving according to the motion we
estimate.

Cmag =
kqAk

2kqBk
2

(kqAk2 + kqBk2)3=2
(5)

Other factors have been added to reflect whether the gra-
dient, is sound for the specific quadrature filter in use. Nega-
tive frequencies are illegal and indicate phase singularities[9,
12].

Cfreq>0 =

(
1 if n̂Tr� > 0 ;

0 otherwise:
(6)

We have also used some more features in our confidence
measure, that are omitted here. Those are sensitive to con-
sistency between the two frames and probability of phase
wrap around (2�).

3. EXPERIMENTAL RESULTS

We have used the phase-based method on various image
data, and it has always turned out advantageous to the con-
ventional gradient method. One important application is
motion compensation in sequences of medical X-ray im-
ages, digital subtraction angiography. Conventional gradi-
ent methods fail to estimate motions accurately, due to dif-
ferent DC level in the frames and motions of the injected
contrast agent. Suppressing low frequencies helps a lot, but
still our phase-based method is superior.

Figures 3 - 6 show a comparison for a medical X-ray an-
giography sequence. Image subtraction is used to filter out
the vasculature and take away the bones and tissue. We get
much less motion artifacts when using phase-based motion
estimation. Constraints over the image are integrated, to fit
a local-global deformable motion model[7] in least square
sense. We have used four quadrature filters in different di-
rections in conjunction with multiple scales and iterative re-
finement.

We have also compared accuracy on images where mo-
tions come from synthetic shifts. A real world test image
has been shifted different amounts in different directions.
To avoid influence from subpixel warps, the image has been
subsampled after the warp. One might expect conventional
gradient methods to work pretty good on these images that
have perfect intensity conservation between frames. But
still, our phase-based method is more accurate, as shown
in figures 1 - 2.

4. FUTURE DEVELOPMENT

The confidence measure in this article is designed without
much theory and experiments. It might be possible to get
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Figure 1: The phase-based method is more accurate than
the conventional gradient method. This figure shows a com-
parison on images(Lena 256x256) that are shifted syntheti-
cally. (One pass estimation, i.e. no iterative refinement)
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Figure 2: Another accuracy comparison between
our phase-based method and the conventional gradient
method. This figure shows a comparison on images(Debbie
128x128) that are shifted synthetically. (One pass estima-
tion, i.e. no iterative refinement)

better accuracy with application specific confidence mea-
sures. For instance, in some applications it may be more
or less important to check consistency between frames. In
general, it can be that the confidence measure factor on mag-
nitude, eq. (5) should depend on the noise level. Instead of
being linear to magnitude, it should be a sigmoid function
that give almost equal confidence to all features that are well
above the noise level.
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Figure 3: Original X-ray images

Figure 4: Subtraction Images, no motion compensation

Figure 5: Subtraction Images, motion compensation based on conventional gradient method, after filtering out low frequen-
cies.

Figure 6: Subtraction Images, motion compensation based on our phase-based method. Note there are less artifacts
compared to figure 5


