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ABSTRACT
The exact knowledge of the sound field within an enclosure is

essential for a number of applications in electro-acoustics. Con-
ventional methods for the assessment of room acoustics model the
sound propagation in analogy to the propagation of light. More
advanced computational methods rely on the numerical solution
of the wave equation. A recently presented method is based on
multidimensional wave digital principles. It allows aphysically
exact numerical modelling of the relevant acoustical effects and
yields robust algorithms.

This contribution presents a new foundation of the multidi-
mensional wave digital principle as applied to room acoustics. It
starts from the first principles of physics. From there, the deriva-
tion of the algorithm only involves basic knowledge of numeri-
cal mathematics, linear algebra, and multidimensional system the-
ory. An example for the simulation of dynamic three-dimensional
sound propagation demonstrates the capability of the method.

1. INTRODUCTION

Progress in digital audio processing requires a deeper understand-
ing of the acoustical interface. This applies not only to sound
transducers, digital hearing aids, or the adaptation of speech com-
munication and recognition systems to adverse acoustical environ-
ments. It is also of vital importance for new applications like spa-
tial audio rendering and advanced coding schemes based on 3D
scene analysis and synthesis.

The design of advanced audio systems involves careful con-
sideration of the sound field, transducer locations, and digital sig-
nal processing. A detailed knowledge of the dynamics of sound
propagation in the environment at hand is very helpful but hard to
obtain. Measurements are slow, expensive, and only feasible in
non-virtual environments. An alternative is the determination of
the sound field structure by computer simulations. There are two
basic approaches: geometrical and computational methods.

Geometrical methods are based on the assumption of plane
waves. This simplifying assumption allows to adapt various meth-
ods from computer graphics. They require a modest numerical ex-
pense, but neglect some acoustical effects, like diffraction. Com-
putational methods use techniques from numerical mathematics to
solve the acoustic wave equation directly. They are numerically
expensive, but they model the acoustical effects correctly.

A computational method based on the multidimensional wave
digital principle [1] has been presented in [2, 3]. It has been shown
that it models free space propagation, diffraction at openings, and
reflection at boundaries correctly. The numerical expense of the
algorithm increases linearly with the volume of the enclosure, but
it does not depend on its shape or structure.

Unfortunately, the derivation of this method relies on a sound
knowledge of several classical engineering and mathematical dis-
ciplines such as mathematical physics, numerical mathematics, net-
work analysis and synthesis, complex analysis, and multidimen-
sional system theory. Some of these disciplines are currently van-
ishing from the engineering curricula, as the emphasis in education
shifts from classical electrical engineering to information technol-
ogy. Although a powerful tool, the multidimensional wave digital
principle is therefore hardly comprehensible to young engineers
with an acoustics or digital signal processing background.

To make this method more accessible, a new foundation of
the multidimensional wave digital principle is presented here. Al-
though the approach is more general, it is restricted to acoustic
wave propagation in this context. Only a basic knowledge of nu-
merical mathematics, linear algebra, and multidimensional system
theory is required to follow our derivation. Classical network the-
ory and complex analysis are avoided, although they would pro-
vide intuitive insight to the initiated.

Section 2 sets up the PDE description of our problem. The
direct method for the simulation algorithm is derived in section 3.
Boundary conditions are treated in section 4. Section 5 presents an
example.

2. PROBLEM DEFINITION

The propagation of sound waves in air is governed by the equation
of motion and the equation of continuity (see [2, 4]) for the acous-
tic pressurep(x; t) and the acoustic fluid velocity vectorv(x; t).
Under reasonable simplifications for sound propagation in air, they
are given by
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2 divv(x; t) = 0 (2)

wheret denotes time andx the vector of space coordinatesx, y,
z. �0 is the static density of the air andc is the speed of sound.

For our purposes, a symmetric form of these equations is ad-
vantageous. This is achieved by introduction of the normalizing
constant (nd is the number of spatial dimensions)

r0 =
p
nd �0c : (3)

Fornd = 3, (1,2) take the form
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The symmetric form is obvious, when (4,5) are combined into one
matrix equation. The operatorsDt andDx denote derivation with
respect to time, space componentx and similar fory andz.2
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The solution of this set of partial differential equations (PDE)
is largely determined by the boundary conditions. These are posed
by the shape and the acoustic properties of the enclosure. The
latter are given in terms of the acoustic or wall impedanceRw

p = RwvN (7)

wherevN is the component ofv normal to the surface.
To keep the physical interpretation of the problem short, only

a simplified model of acoustic wave propagation is given in (6).
Neither sound sources nor loss terms, which may occur in media
other than air, are considered. However, the derivation of the sim-
ulation algorithm in the following section takes into account also
these effects.

3. SIMULATION ALGORITHM

The essential elements of the proposed algorithm are best explained
for only one spatial variablex. This simplifies the notation even
when we consider source and loss terms. The derivation proceeds
in the following steps: The PDE in matrix form is separated into a
reactive and a resistive part. The reactive part contains the time and
space derivatives. These are decoupled by transformation of the
dependend and the independend coordinates. In decoupled form,
discretization is carried out by numerical integration and a trans-
formation to so called wave quantities. The resulting discrete al-
gorithm is formulated as a state space model.

3.1. one space dimension

Restricting (6) to one dimension in space (nd = 1), including the
source termse1(x; t) ande2(x; t) on the right hand side and the
loss termsr1 andr2 in the operator matrix gives�
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vx andp=r0 have been replaced byi1 andi2.

3.1.1. separation

Eq. (8) is now separated into two terms denoted by

Zl =

�
�0Dt r0Dx

r0Dx �0Dt

�
and Zr =

�
r1 0
0 r2

�
(9)

We callZ l the reactive andZr the resisitive part. To treat both
parts separately, introduce the abbreviationu for the reactive part
and write with obvious meaning ofi ande

Zli = u ; (10)

u+Zri = e : (11)

Note that (10) contains all derivation operators but no losses, while
(11) is an algebraic equation without derivatives.

3.1.2. decoupling of the reactive part

The reactive part requires a special handling before partial deriva-
tives with respect to time and space can be discretized. Not only
the components ofi but also the independent coordinates are de-
coupled by suitable transformations. At first, we introduce a trans-
formation of the dependent coordinates to diagonalize the operator
matrixZl

~u = Q
�1
u; ~i = Q
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i; ~Zl = Q

�1
ZlQ; Q =
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�
:

(12)
The reactive part in diagonal form results as

~Zl
~i = ~u; ~Zl =
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�0Dt � r0Dx 0
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: (13)
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Figure 1: transformation of space and time coordinates

Next, we change the independent coordinates space and time
to�+ and�� as shown in Fig. 1. The choice of the transformation�
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aligns the new coordinates with the propagation direction of sound.
In terms of the transformed variables

î(�+; ��) = ~i(x; t); û(�+; ��) = ~u(x; t); (15)

the reactive part takes the form

Ẑlî = û; Ẑl =

�
D�

�

0
0 D�+

�
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or for the elements of̂u andî

û1 = D�
�
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@î2
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: (17)

Eqn. (17) shows that the transformations (12) for the dependent
and (14) for the independent variables have decoupled the reac-
tive part completely. Not only iŝZl diagonal, also each diagonal
element contains a partial derivation with repect to only one coor-
dinate. This means the numerical treatment of the differentiation
operators in (17) can be handled independently.

3.1.3. numerical integration

It is thus sufficient to show the integration only for one component
in (17). We solve the first equation forî1

î1(�+; ��) =

Z �
�

1

û1(�+; �)d� (18)



and apply the trapezoidal rule of integration with step size�� (�+
omitted)

î1(��) = î1(�����) +
��
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h
û1(��) + û1(�����)

i
: (19)

A similar relation follows for̂i2. Evaluation of these equations
on a uniform grid in the(�+; ��)-plane withR0 = 2=�� and
î1=2[�;�] = î1=2(���; ���) gives

û1[�; �]�R0 î1[�; �] = �D̂� [û1[�;�] +R0 î1[�; �]] (20)

û2[�; �]�R0 î2[�; �] = �D̂�[û2[�; �] + R0 î2[�; �]] (21)

with the shift operators

D̂�ŵ[�; �] = ŵ[�� 1; �]; D̂�ŵ[�; �] = ŵ[�; � � 1] (22)

Unfortunately, eqns. (20,21) are not computable, sinceû1=2 and
î1=2 occur both inside and outside the shift operators. This situa-
tion can be circumvented with another change of variables.

3.1.4. wave quantities

Transformingû1=2 andî1=2 into new variableŝa1=2 andb̂1=2 ac-
cording to
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turns eqns. (20,21) into a computable set of decoupled equations
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The new variableŝa and b̂ are also called wave quantities [1].
Eqns. (24) provide a very simple way to compute wave propaga-
tion phenomena. However, they are formulated in terms of wave
quantities depending on samples in a(�+; ��)-plane. To make (24)
compliant with our initial problem, we have to convert back to the
elements velocity and pressure ini(x; t). This will again intro-
duce the interdependence removed in section 3.1.2 and result in
more involved shift operators than̂D� and D̂� from (22). But
— in contrast to the differential operators encountered earlier —
shift operators can be easily implemented on a digital computer
and pose no fundamental problem. This will be shown now.

When converting back from the(�+; ��)-coordinates to(x; t),
it has to be insured that the sampling points(�+ = ���; �� =
���) and(x = mh; t = kT ) coincide. This is achieved by the
conditions (see Fig. 1)

h = cT; �� =
h

r0
=

T

�0
: (25)

From (14) or by inspection of Fig. 1 follows that the change in
the discrete coordinate systems[�; �]! [m;k] results in the shift
operators

D̂�ŵ[�; �] = ~D+ ~w[m;k]; ~D+ ~w[m;k] = ~w[m� 1; k � 1]

D̂�ŵ[�; �] = ~D� ~w[m;k]; ~D� ~w[m;k] = ~w[m+ 1; k� 1]

With (24) results the equation set for the wave quatities~a[m;k]

and~b[m;k] in discretex; t-coordinates�
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~b = � ~D� ~a:

(26)

Note, that (26) corresponds to (13). Inversion of the decoupling
process in (12) witha = Q~a, b = Q~b gives a wave quantity
representation of the elements ofi andu similar to (23)�
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�
; � = 1; 2 : (27)

3.1.5. state space representation

The final step is the formulation of the simulation algorithm as a
state space representation. The choice ofz = ~b = Q�1b as state
vector turns (26) into

z = � ~D�Q
�1
a : (28)

To obtain the state equation, we require further information from
the reactive part in (11). Using (27) to representi andu in (11) by
the wave quantitiesa andb and solving fora results in

a = S% b+Se e (29)

with

S% =

�
S%;1 0
0 S%;2

�
; Se =

�
Se;1 0
0 Se;2

�
; (30)

S%;� =
r� � R0

r� + R0

; Se;� =
2R0

r� +R0

; � = 1; 2: (31)

Inserting (29) into (28) gives the state equation

z = ~D� [A z +B e] (32)

with
A = �Q�1S% Q; B = �Q�1Se: (33)

The state equation (32) represents the state in terms of wave quan-
tities rather than byi1 andi2 as required by (8). The conversion
of wave quantities toi gives the output equation of the state space
representation.

The relation between wave quantitiesa, b and the original
variablesi follows from (27) as

i =
1

2R0

[a� b] : (34)

Elimination ofa by (29) gives the output equation

i = C z + F e (35)

with

C =
1

2R0

[S% � I]Q; F =
1

2R0

Se : (36)

whereI is the identity matrix.
Eqns. (32) and (35) are the state space representation of a dis-

crete model for the wave propagation process described by (8). It
computes the variablesvx andp in i from the given source terms
in e. Choosing wave quantities as state vector results in a simple
form of the discrete operator~D� for the shift and delay opera-
tions.



3.2. three space dimensions

The derivation of a discrete model for wave propagation in three
space dimensions follows the same lines as for one space dimen-
sion. The key point is that the matrix derivation operator in (6)
(possibly with additional loss terms) can be decomposed into three
terms, one for each space dimension. The discretization of these
terms can be performed separately as explained in section 3.1.

The result is a state space representation of a discrete system
of the same general form as (32) and (35) for one space dimension

z = ~D� [Az + Be] ; (37)

i = Cz +Fe: (38)

The variables of the source termse, the outputi and the state vec-
tor z depend on time and all three space dimensions. The state
space matricesA, B, C, andF follow from the original PDE
in a similar way as in (33) and (36). However, due to couplings
between the three space dimensions, the expressions are more in-
volved. Space does not permit to report the derivation in detail.

4. BOUNDARY CONDITIONS

The operators~D� and ~D� in the state equations contain shifts in
both directions of each spatial dimension. This requires the knowl-
edge of the previous states in all adjacent points. However, if a
point is at the boundary of the spatial domain, e.g. at the wall of
an enclosure, then one or more of the adjacent points are beyond
the boundary, where the PDE is no more valid. In this case, the
state of these points has to be determined from the boundary con-
ditions (7) rather than from the PDE (1, 2). (See also [5].)

The idea is to split the state vectorz into two components: the
interior stateszi and the boundary stateszb. The interior states
follow from a state equation similar to (37). The boundary states
follow from the interior states and the boundary conditions. The
state space representation has to consider both types of states ap-
propriately. Its general form is given by

zi =
�
T
T
i
~D�

�
[Az + Be] ; (39)

zb = Abze + Bbe; (40)

z = T izi + T bzb; (41)

i = Cz +Fe: (42)

The matricesT i andT b contain only ones and zeros. They de-
pend on the geometry and describe whether a state is an interior
statezi or a boundary statezb. Eq. (39) is very similar to the state
equation (37), except that it delivers only the interior states. The
boundary states are computed in (40) from the interior states and
the boundary conditions, which determineAb andBb. Both inte-
rior and boundary states are merged into the complete state vector
z in (41). It is used to deliver the output quantities in (42) and
to update the interior states in (39). Note, that the boundary state
equation (40) holds for memoryless wall impedancesRw. If the
boundary has temporal or spatial memory, then also (40) contains
a delay or shift operator similar to~D�.

5. EXAMPLE

As an example, we consider a simple setup for active noise con-
trol. Fig. 2 (top) shows a section of a flow duct. The sourceS1
represents a disturbing fan noise. Its sound field interferes with a

second sound field emanating from the sourceS2. Typically,S2 is
controlled by an adaptive system to minimize the micropone signal
M1. In this example,S1 andS2 are sine waves with an appropriate
phase shift. The resulting sound pressure has been computed from
(39-42). Fig. 2 (bottom) shows a horizontal cross section through
the 3D pressure field. The effects of constructive and destructive
interference upstream and downstream ofS2 are clearly visible.
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Figure 2: Example: active noise control in a flow duct

6. CONCLUSION

We have presented an algorithm for the simulation of dynamic
wave propagation in three space coordinates. It is based on the
wave digital principle and shares its advantages. However, unlike
in previous publications on this topic, no reference to multidimen-
sional network theory and complex analysis has been made. In-
stead, a straightforward derivation from the basic laws of physics
to a multidimensional discrete state space formulation has been
made. This justifies to call it a direct method to computational
acoustics. Although presented and implemented for the simula-
tion of acoustical phenomena, the method can also be applied to
other technical wave propagation effects.
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