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ABSTRACT Unfortunately, the derivation of this method relies on a sound

The exact knowledge of the sound field within an enclosure is knowledge of several classical engineering and mathematical dis-
essential for a number of applications in electro-acoustics. Con-ciplines such as mathematical physics, numerical mathematics, net-
ventional methods for the assessment of room acoustics model thavork analysis and synthesis, complex analysis, and multidimen-
sound propagation in analogy to the propagation of light. More sional system theory. Some of these disciplines are currently van-
advanced computational methods rely on the numerical solutionishing from the engineering curricula, as the emphasisin education
of the wave equation. A recently presented method is based onshifts from classical electrical engineering to information technol-
multidimensional wave digital principles. It allowspdysically ogy. Although a powerful tool, the nitidimensional wave digital
exact numerical modelling of the relevant acoustical effects and principle is therefore hardly comprehensible to young engineers
yields robust algorithms. with an acoustics or digital signal processing background.

This contribution presents a new foundation of theltidi To make this method more accessible, a new foundation of
mensional wave digital principle as applied to room acoustics. It the multidimensional wave digital principle is presented here. Al-
starts from the first principles of physics. From there, the deriva- though the approach is more general, it is restricted to acoustic
tion of the algorithm only involves basic knowledge of numeri- wave propagation in this context. Only a basic knowledge of nu-
cal mathematics, linear algebra, and multidimensional system the-merical mathematics, linear algebra, and multidimensional system
ory. An example for the simulation of dynamic three-dimensional theory is required to follow our derivation. Classical network the-

sound propagation demonstrates the céipabf the metod. ory and complex analysis are avoided, although they would pro-
vide intuitive insight to the initiated.
1. INTRODUCTION Section 2 sets up the PDE description of our problem. The

direct method for the simulation algorithm is derived in section 3.

Progress in digital audio processing requires a deeper understand@oundary coniions are treated in section 4. Section 5 presents an

ing of the acoustical interface. This applies not only to sound €xample.

transducers, digital hearing aids, or the adaptation of speech com-

munication and recognition systems to adverse acoustical environ- 2. PROBLEM DEFINITION

ments. It is also of vital importance for new applications like spa-

tial audio rendering and advanced coding schemes based on 300he propagation of sound waves in air is governed by the equation

scene analysis and synthesis. of motion and the equation of continuity (see [2, 4]) for the acous-
The design of advanced audio systems involves careful con-tic pressure(x, t) and the acoustic fluid velocity vecter(x, ¢).

sideration of the sound field, transducer locations, and digital sig- Under reasonable simplifications for sound propagationin air, they

nal processing. A detailed knowledge of the dynamics of sound are given by

propagation in the environment at hand is very helpful but hard to

obtain. Measurements are slow, expensive, and only feasible in p0 %v(x, t)+ gradp(x,t) = 0 1)
non-virtual environments. An alternative is the determination of 9
the _sound field structure by_computer simulat_ions. There are two —p(x,t) + po 2 div vix,t) = 0 )
basic approaches: geometrical and computational methods. ot

Geometrical methods are based on the assumption of planewheret denotes time anst the vector of space coordinatesy,
waves. This simplifying assumption allows to adapt various meth- . p, is the static density of the air ards the speed of sound.
ods from computer graphics. They require a modest numerical ex-  For our purposes, a symmetric form of these equations is ad-
pense, but neglect some acoustical effects, like diffraction. Com-vantageous. This is achieved by introduction of the normalizing
putational methods use techniques from numerical mathematics toconstant. is the number of spatial dimensions)
solve the acoustic wave equation directly. They are numerically
expensive, but they model the acoustical effects correctly. ro = \/nd poc . (3)

A computational method based on the multidimensional wave Forna = 3, (1,2) take the form
digital principle [1] has been presentedin [2, 3]. It has been shown S

that it models free space propagation, diffraction at openings, and a L 4
reflection at boundaries correctly. The numerical expense of the Po 5V +rogra ro “)
algorithm increases linearly with the volume of the enclosure, but p

. o
it does not depend on its shape or structure. ro divv + 3po Btre 0. (5)



The symmetric form is obvious, when (4,5) are combined into one 3.1.2. decoupling of the reactive part
matrix equation. The operatofg; andD, denote derivation with
respectto time, space componerand similar fory andz.

pth 0 0 ToDm

The reactive part requires a special handling before partial deriva-
tives with respect to time and space can be discretized. Not only
the components of but also the independent coordinates are de-

Vg
0 peDy 0 roD, vy 8 couple_d by suitable transformatio_ns. At first{ we intr_oduce atrans-
v = (6) formation of the dependent coordinates to diagonalize the operator
0 0 poDe  ro D). » 8 matrix Z;
roDz roDy roD. 3poD; ro L1
The solution of this set of partial differential equations (PDE) 1=Q7'u, 1=Q7", Z21=Q7'2:1Q, Q= [ 1 1
is largely determined by the boundary cdtiwhs. These are posed (12)

by the shape and the acoustic properties of the enclosure. Therne reactive part in diagonal form results as
latter are given in terms of the acoustic or wall impedaRce

b= Ry O zia z= [P L0 L] @
wherevy is the component of normal to the surface.

To keep the physical interpretation of the problem short, only
a simplified model of acoustic wave propagation is given in (6).
Neither sound sources nor loss terms, which may occur in media
other than air, are considered. However, the derivation of the sim-
ulation algorithm in the following section takes into account also
these effects.

3. SIMULATION ALGORITHM
The essential elements of the proposed algorithm are bestexplained ~ Figure 1: transformation of space and time coordinates
for only one spatial variable. This simplifies the notation even . ) .
when we consider source and loss terms. The derivation proceeds N€xt, we change the independent coordinates space and time
in the following steps: The PDE in matrix form is separated into a {0 A+ andA_ as shownin Fig. 1. The choice of the transformation
reactive and a resistive part. The reactive part contains the time an
space derivatives. These are decoupled by transformation of ﬂ;’F x ] = [ fo —To ] [M] = po [ ¢ —¢ ] [M] (14)
dependend and the independend coordinates. In decoupled forn, ¢ po po A- L1 A-
discretization is carried out by numerical integration and a trans- ) . i L
formation to so called wave quantities. The resulting discrete al- aligns the new coordlnateswnh_the propagation direction of sound.
gorithm is formulated as a state space model. In terms of the transformed variables
3.1. one space dimension 1A A) =i ), Al A-) =d(@, ), (19

Restricting (6) to one dimension in spaee; (= 1), including the the reactive part takes the form

source terme: (z, t) andez(x, t) on the right hand side and the
f . . = ~ 3 D>\_ 0
loss terms+; andr in the operator matrix gives VAVEERTS Z, = [ 0 D ] , (16)
+
pth +r1 roDs 11 _ €1 (8) “
roDs poD: + 12 2 |~ | ex | or for the elements of and:
v, andp/rq have been replaced by ands.. iy =Dyt = 88;1 7 P Dx+;2 _ ;);2 . 17
- +

3.1.1. separation )
P Eqn. (17) shows that the transformations (12) for the dependent

Eq. (8) is now separated into two terms denoted by and (14) for the independent variables have decoupled the reac-
tive part completely. Not only i%Z; diagonal, also each diagonal
Z = [ poDe roDe ] and Z, = [ ri 0 ] 9) element contains a partial derivation with repect to only one coor-
roDs poD: 0 r dinate. This means the numerical treatment of the differentiation

We call Z; the reactive an& , the resisitive part. To treat both operatorsin (17) can be handled independently.

parts separately, introduce the abbreviatiofor the reactive part

and write with obvious meaning @éfande 3.1.3. numerical integration
Zi = u, (10) Itis thus sufficient to show the integration only for one component
wtZi = e. a1 in (17). We solve the first equation for

Note that (10) contains all derivation operators but no losses, while A A= N
(10) b () =/ (A, €) de (18)

(11) is an algebraic equation without derivatives.

[ere]



and apply the trapezoidal rule of integration with step i2e(A+ With (24) results the equation set for the wave quatitips, k]

omitted) andb[m, k] in discreter, t-coordinates
] o] A)\ ~ ~ l~)1[m k] D_ 0 &1[177, k]
)=u(A=AN) + — A )\_—A)\}. 1 o ’ = — - L ’
u(A-) = u( )+ 5 (A=) 4t ( )| (19) [ balm, k] 0o Dy dz[m, k]
N , (26)
A similar relation follows fori.. Evaluation of these equations b - _ Dy a.
on a uniform grid in the(A;, A_)-plane withRy = 2/AX and ) )
1 2[1, V) = 12 (AN, vAN) gives Note, that (26) corresponds to (13). Inversion of the decoupling
process in (12) witk = Qa, b = Qb gives a wave quantity
[, v] — Roia[u, 1] = —Du[&l[u,u] + Ron[u, ] (20) representation of the elementsiadind« similar to (23)
&2[“711] _R0;2[“7y] = _Dﬂ[a2[“71/]+R0;2[“7V]] (21) |: ZH :| =Ry |: Z;H :| s k=1,2. 27)

with the shift operators
3.1.5. state space representation

Dodlu,v] = dlu—1,v], Dudfu,v] = d[pu,v—1 (22) ) ) ) )
bl v] : ) -] : ) The final step is the formulation of the simulation algorithm as a

Unfortunately, eqgns. (20,21) are not computable, siinge and state space representation. The choice ef b = Q~'b as state
21/2 occur both inside and outside the shift operators. This situa- vector turns (26) into
tion can be circumvented with another change of variables. z2=-DiQ 7 'a. (28)

To obtain the state equation, we require further information from
the reactive partin (11). Using (27) to represeandu in (11) by
the wave quantitiea andb and solving fora results in

3.1.4. wave quadtities

Transformingi, /» and§1/2 into new variableg /, andBl/Q ac-

cording to a=S,b+S.e (29)
A i with
[f’“]zRo[lﬁ“],msz, Roz[l go] (23)
by, in I —FRo Sen O Ser 0
SQ: 0 592 , Se= 0 S. o ) (30)
turns egns. (20,21) into a computable set of decoupled equations ’ ’
r. — Ro 2Ry
. . Spe=—""2L0 0§, =—2 k=12 31
bl[“vy] _ D, 0 &1[“71/] (24) @ s + Ro ’ re + Ro " ( )
bolu,v] | 0o D, az[p,v] |- Inserting (29) into (28) gives the state equation

. . » z=D1[Az+ Be] (32)
The new variableg andb are also called wave quantities [1].

Eqns. (24) provide a very simple way to compute wave propaga- with
tion phenomena. However, they are formulated in terms of wave A=-Q7'5,Q, B=-Q7'S.. (33)

quantities depending on samplesifg , A )-plane. Tomake (24)  The state equation (32) represents the state in terms of wave quan-
compliant with our initial problem, we have to convertback to the jties rather than by, andi- as required by (8). The conversion

elements velocity and pressureifw, ¢). This will again intro- ot \ave quantities té gives the output equation of the state space
duce the interdependence removed in section 3.1.2 and result Nepresentation.
more involved shift operators thait,, and D, from (22). But The relation between wave quantities b and the original

— in contrast to the differential operators encountered earlier — yariables; follows from (27) as

shift operators can be easily implemented on a digital computer 1

and pose no fundamental problem. This will be shown now. i=—[a—b]. (34)
When converting back from thé\.;, A_ )-coordinates tgz, t), 2Ro
it has to be insured that the sampling poifhs = pAM A = Elimination ofa by (29) gives the output equation
vAMX) and(z = mh,t = kT') coincide. This is achieved by the
conditions (see Fig. 1) 1=Cz+Fe (35)
h T with L L
h=cl, A= —=—. 25 — -
! o (25) C=3p8.-1Q F=gp-S.. (36)

wherel is the identity matrix.

Eqns. (32) and (35) are the state space representation of a dis-
crete model for the wave propagation process described by (8). It
computes the variables. andp in ¢ from the given source terms
in e. Choosing wave qudities as state vector results in a simple
form of the discrete operatd® 4 for the shift and delay opera-
—w[m, k] = w[m+ 1,k — 1] tions.

From (14) or by inspection of Fig. 1 follows that the change in
the discrete coordinate systefpsy] — [m, k] results in the shift
operators

b) b)

M@[“7V]ZD+@[m7k]7 D-I'@[mvk]:d}[m_Lk_l]
D D

vO[p, V] =



3.2. three space dimensions second sound field emanating from the souwfeeTypically, S: is
controlled by an adaptive system to minimize the micropone signal
M;. Inthis example$; andS: are sine waves with an appropriate
phase shift. The resultingpand pressure has been computed from
(39-42). Fig. 2 (bottom) shows a horizontal cross section through
the 3D pressure field. The effects of constructive and destructive
8nterference upstream and downstreansofare clearly visible.

The derivation of a discrete model for wave propagation in three
space dimensions follows the same lines as for one space dimen
sion. The key point is that the matrix derivation operator in (6)
(possibly with additional loss terms) can be decomposed into three.
terms, one for each space dimension. The discretization of thes
terms can be performed separately as explained in section 3.1.
The result is a state space representation of a discrete system
of the same general form as (32) and (35) for one space dimension

z = 'ZNDi[Az—l—Be], (37)
i = Cz+ Fe. (38)

The variables of the source termsthe output and the state vec-

tor z depend on time and all three space dimensions. The state
space matricesA, B, C, and F follow from the original PDE

in a similar way as in (33) and (36). However, due to couplings
between the three space dimensions, the expressions are more ir >
volved. Space does not permit to report the derivation in detail.

t S

sound pressure

4. BOUNDARY CONDITIONS ' lengthinm —s
- L . . _ Fi 2:E le: acti i linaf
The operatordD+ andD + in the state equations contain shifts in 'gure xample: active noise control in a flow duct
both directions of each spatial dimension. This requires the knowl-
edge of the previous states in all adjacent points. However, if a
point is at the boundary of the spatial domain, e.g. at the wall of 6. CONCLUSION

an enclosure, then one or more of the adjacent points are beyonqu have presented an algorithm for the simulation of dynamic

the boundary, where the PDE is no more valid. In this case, the o ) :
state of these points has to be determined from the boundary con¥/3v€ propagation in three space coordinates. It is based on the

ditions (7) rather than from the PDE (1, 2). (See also [5].) wave d_igital prin_cipl_e and she_lres it_s advantages. However, unlike
The idea is to split the state vectointo two components: the I Previous publications on this topic, no reft_arence to multidimen-
interior statesz; and the boundary states. The interior states sional netvvo_rk theory and c_om_plex analysis ha_s been made. _In-
follow from a state equation similar to (37). The boundary states stead, a s_tr_alghtfprward _derlvatlon from the basic Iavx_/s of physics
follow from the interior states and the boundary citiods. The to a multidimensional discrete state space formulation has been

state space representation has to consider both types of states aﬂlade' . This justifies to call it a dire(_:t method to computat_ional
propriately. Its general form is given by acoustics. Although presented and implemented for the simula-

tion of acoustical phenomena, the method can also be applied to

z, = (Tin?i) [Az + Be], (39) other technical wave propagation effects.
Zp = Abze + Bb@, (40)
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