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ABSTRACT

In this paper we propose an original study of the reconstruc-
tion of subband compressed images impaired by channel
transmission errors. The method proceeds in two steps :
first a detection scheme is applied to determine which co-
efficients of the subband decomposition have been affected
by transmission, and then an estimation step tries to eval-
uate the erroneous coefficients. In our model, subband co-
efficients are considered to be drawn from jointly gaussian
random processes. Based on this assumption, conditional
statistics can be computed which enable to test the likeli-
hood of a given set of received coefficients with respect to
the rest of the image. The detection and estimation pro-
cesses are derived from these statistics. The method is val-
idated through simulation and visual results are provided.
The drawbacks of the method are outlined and explained
through the discrepancies between the gaussian assumption
and real world images, namely around image edges.

1. INTRODUCTION

Nowadays, the field of image restoration has been studied in
many papers, combating different types of noises and degra-
dations. In the case of transmission of coefficients of an
image over noisy digital channels, the type of degradation
at hand is asalt and peppernoise, but with non constant
impulse values : since a pixel value is transmitted as its bi-
nary representation, any of its bits can be corrupted, and
yield an other decimal value in reconstruction. Classical
image restoration methods used against impulsive noise in-
clude markov random fields regularized reconstruction [1],
order statistics filters [2, 3], with median filters as a particu-
lar case [4, 5, 6]. Those methods work in the pixel domain,
with the general assumption that an image is made of a set of
uniform regions and edges. In the particular case of subband
images [7, 8] corrupted by channel noise, the salt and pepper
noise appears on each subband coefficient, and translates
into modulations of the filters basis functions at the synthe-

sis stage, appearing randomly on the reconstructed image.
It seems interesting to try to use this knowledge to correct
the received image, in the subband domain. If we want to
detect and correct the errors occuring on the subband coef-
ficients, we cannot rely on the same assumption for model-
ing the relationship between coefficients inside and between
subbands as in the pixel domain. Moreover, rather than sim-
ply use a classical “uniform regions plus edges” assumption,
we can try to exploit the spatial and frequential redundancy
inside and between subbands of an image to get informa-
tion about the coefficients. In order to obtain a sufficiently
versatile and flexible assumption regarding the subband de-
composition of an image, we drop in this paper the classical
high-level assumptions, and model the subband coefficients
as jointly gaussian random variables, which have between
them relationships modeling the redundancy of the subband
decomposition. This model is described in section 2. Sec-
tion 3 reviews the application of the model to the detection
and reconstruction of the subband coefficients affected by
channel noise : to decide whether a coefficient (or a set of
coefficients) contains a channel error, we use the statistic
of the given coefficients conditioned on their neighbours,
both in the spatial and frequential domains. The computa-
tion of these statistics is made easier thanks to the gaussian
assumption. In the same section, we add some knowledge of
the noise generation process (i.e. the channel) to the model,
giving rise to a discrete conditioned probability model. Sec-
tion 4 presents simulations and visual results, and reviews
the achievements and drawbacks of the method, namely a
general reconstruction gain of nearly 5 dB in PSNR at 1%
error rate, but a performance that is limited by the poor edge
recognition capabilities of the gaussian probability density
function (pdf).

2. NOTATIONS AND THEORETICAL BASIS

The original image is decomposed by a 2-DM × M
critically-sampled filter bank, giving rise toM2 subband sig-



nalsy(k,l)(i, j), indices(k, l) referring to the subband num-
ber, and(i, j) to the spatial coordinates. These subbands
are scalar quantised with appropriate quantisers. LetQ(k,l)

be the number of quantisation levels of subband(k, l), and

let us denote byq(k,l)r , r = 0, . . . ,Q(k,l)−1 the reproduction
levels of these quantisers. The binary representations of the
indices of the quantisation levels are sent on a binary sym-
metric channel, with error probabilityPe.

The receiver only sees the valuesy(k,l)(i, j), some of
them corrupted by channel noise. The main idea of the
model is to assume that each of the coefficients has gaus-
sian probability density function. To take into account the
spatial (intra-band) and frequential (inter-band) redundancy,
we will compute the statistics of a set of coefficientsS (the
conditioned set), conditioned on an other set of coefficients
S′ (theconditioning set). This conditional pdf is also gaus-
sian. If we denote by(µS ,RS) and(µS ′ ,RS ′) the mean and
covariance matrices ofS andS′ respectively, and byRSS ′
their cross-covariance matrix, the mean ofS givenS′ is

µS|S ′ = µS+RSS ′R
−1
S ′

(
S′ −µS ′

)
, (1)

and its conditional covariance matrix is

RS|S ′ = RS −RSS ′R
−1
S ′ R

T
SS ′ . (2)

Now if we want to decide whether the setS contains an error
induced by the channel, we only have to verify its coherence
with S′, by computing its likelihood under the conditional
statistics

(
µS|S ′ ,RS|S ′

)
. One can show that

∣∣RS|S ′
∣∣≤ |RS |,

so that the operation of conditioning can only be informa-
tive, by decreasing the entropy1 of S. Then, if we have
decided thatS contains an error, we can try to replace it by
an estimate. We can for instance use the conditional mean2

µS|S ′ to replaceS.
The next section will describe two possible implemen-

tations of the detection method outlined here.

3. IMPLEMENTATIONS FOR ERRORS
DIAGNOSIS AND CORRECTION

We have tested two different configurations for the error de-
tection step of our reconstruction algorithm.

3.1. Gaussian Conditional Probability (GCP)

The GCP model is the straightforward implementa-
tion of the conditional probabilities given above. The
method is as follows : first, one has to select setsS
andS′, for instanceS =

{
y(0,0)(i, j) · · ·y(M−1,M−1)(i, j)

}
,

1Recall that the entropy of aK-dimensional gaussian random vectorV

is H(V) = K
2 log2 2πe|RV |

1
K .

2Note that this estimation byµS|S ′ is equivalent to the minimum mean
squared error prediction ofS by S ′.

i.e. all the local subband coefficients, andS′ ={
y(0,0)(i±1, j±1) · · ·y(M−1,M−1)(i±1, j±1)

}
, in which

case we test the coherence of each block of subband coeffi-
cientsS with respect to its neighbours. Then, one evaluates
the first and second order moments ofS andS′ on the re-
ceived subband coefficients. Finally, the detection can take
place : one simply scans the subband images, line by line,
constructs local setsS andS′, and computes the probabil-
ity p that any realization ofS is closer to the conditional
meanµS|S ′ than the received one. Ifp exceeds some pre-
defined thresholdT, then the realization ofS is considered
too unprobable, and is marked as false. The replacement of
S by its conditional mean can be done after each detection,
or only after a pass over the whole image.

The choice of setsS andS′ is of obvious importance.
The greater the dimension of the sets, the more their mo-
ments will be difficult to evaluate with precision. Also, with
great dimensions, matrix inversions implied by (1) and (2)
will be more costly, and less accurate. On the other hand,
including lots of coefficients in the sets ensures the capabil-
ity to catch more long-range dependencies between them.
So it is clear that a trade-off is to be found. Experiments
show that coefficients belonging to the same subband in a
relatively small spatial regions are very correlated, whereas
coefficients of different subbands in the same spatial loca-
tion are nearly decorrelated. Some correlation also exists
between coefficients of different subbands in small spatial
regions.

3.2. Discrete Probabilities of Quantised Gaussians
(DPQG)

This variant of the method takes into account the model of
noise production. Since the coefficients are quantised be-
fore being sent on the channel, received coefficients can
only take a discrete set of values, namely the quantisa-

tion levelsq(k,l)r . Knowing the error probabilityPe of the
channel, one can easily compute the probabilitiesP(k,l)(r|s)

that a coefficient of subband(k, l) takes the valueq(k,l)r at

the output of the channel ifq(k,l)s was actually sent. Now
we can compute discrete probabilities of receiving an er-
roneous coefficient, using the gaussian source production

model. Imagine for instance that we receive the valueq(k,l)r

for the coefficienty(k,l)(i, j). We constitute the two sets

S =
{

y(k,l)(i, j)
}

, andS′, with relevant neighbours. Once

µS|S ′ andRS|S ′ are computed by (1) and (2), we completely

know a relevant pdf ofy(k,l)(i, j) before quantisation; the

discrete probabilities of each reproduction levelP(q(k,l)s |S′),
s= 0, . . . ,Q(k,l)−1, are simple one-dimensional integral of
this pdf over the quantisation intervals. Then the probability



that the received level is correct is

P(r) =
P(q(k,l)r |S′) P(k,l)(r|r)

∑Q(k,l )−1
s=0 P(q(k,l)s |S′) P(k,l)(r|s)

. (3)

If this probability is less than 0.5, theny(k,l)(i, j) is rejected,
and thus replaced by either its conditional mean, or the most
probable level. This method has the advantage of taking into
account more knowledge than the GCP method, namely the
source quantisers and the channel characteristics. On the
other hand, DPQG method is restricted to setsS of dimen-
sion 1, due to the integrals computations necessary for each
pixel.

4. SIMULATION RESULTS

First, the GCP method has been tested. The figure of merit
retained for reconstruction is the peak signal-to-noise ratio
(PSNR). The test image used wasLena, with a channel bit
error rate of 10−2. Tests were conducted via Monte-Carlo
simulations, and the results given are means of 20 simula-
tions. The detection performance is measured by the per-
centage of channel errors detected, as well as the number of
false alarms, i.e. the coefficients correctly received, but that
the algorithm has marked as erroneous.

The first conclusion of the study is that the dimension of
S giving the best results is simply one : it is always better to
analyse and replace each coefficient separately. This comes
from the inherent difficulty to estimate precisely multidi-
mensional models from a limited amount of data samples.

A second conclusion is that the model fails in general
to account for the presence of edges. To see this, table 1
shows the difference of performance between the theoreti-
cally optimal (TO) choice ofS′ and an heuristically (H) cho-

senS′. Both refer toS =
{

y(k,l)(i, j)
}

. The optimal choice

has been designed so as to minimise the residual variance∣∣RS|S ′
∣∣, with a size ofS′ of 20. The heuristicS′ is designed

to take into account the presence of edges as preferential di-
rections : the coherence ofS is tested against four different
S′ sets, each containing all neighbouring subband coeffi-
cients in a particular direction (horizontal, vertical, and both
diagonals). One can see from table 1 that the real problem
of setup TO is the number of false alarms. In fact, these are
mainly located around edges, but do not appear in setup H.
Even if setup H finds less errors than setup TO, its recon-
struction quality is far better.

One last series of simulations for the GCP method dis-
cusses the choice of the rejection thresholdT. If T is high,
we will not detect many errors, but ifT is too low, we will
mark all edges as errors. Figure 1 shows the optimal value
for setup H, aroundT = 0.9, which is clearly a compromise
between the percentage of error detection and the number
of false alarms.
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Figure 1: Effect of the rejection threshold on detection and
reconstruction performance.

PSNR % found false alarms
TO 26.38 dB 45 % 409
H 28.29 dB 31 % 10

Table 1: Performance of theoretically optimal (TO) setS′

vs. heuristically chosen (H) setS′. The PSNR without any
processing is 24 dB.

Figure 2 shows visual results for the GCP method.
Regarding the DPQG method, a setup withS′ of dimen-

sion 32 has been found to be the best. It is mainly con-
stituted by neighbouring coefficients of all subbands. The
PSNR reached by this method is 28.76 dB, with a recursive
implementation, i.e. replacement of erroneous coefficients
right after detection. The corresponding visual results are
given in figure 2.

5. CONCLUSIONS AND FURTHER WORK

We have studied in this paper a novel method of diagnostic
and correction of transmission errors in images, working in
the subband domain. A variant of this method, exploiting
the discrete nature of the signal has been shown to be ef-



(a) (b) (c)

Figure 2: Example of reconstructions.(a) reconstruction from noisy subbands (Pe= .01), without processing (23.6 dB),(b)
after processing by the GCP model (28.0 dB) and(c) by the DPQG model (28.6 dB)

ficient and promising. Gains in PSNR of nearly 5 dB have
been reached for bit error rates of 10−2. The main drawback
of the method is its lack of built-in recognition of edges.
Further work will thus be accomplished towards a richer and
more appropriate image source model, such as for instance
a mixture model.
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