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ABSTRACT

One of the major problems in multiple target tracking is to ob-
tain an accurate association between targets and noisy measure-
ments. We introduce a new scheme, calledConstrained Optimal
Data Association(CODA), that finds the optimal data association
by a MAP estimation method and uses a new energy function. In
this scheme, the natural constraints between targets and measure-
ments are defined so that they may contain missed detection and
false alarm errors. Most current algorithms involve many heuris-
tic adjustments of the parameters. Instead, this paper suggests an
adaptive mechanism for such parameter updation. In this manner,
the system automatically adapts to the clutter environment as it
continuously changes in time and space, resulting in better associ-
ation. Experimental results, using PDA, NNF, and CODA, show
that the new approach reduces position errors in crossing trajecto-
ries by 13.9% on average compared to NNF.

1. INTRODUCTION

Multiple target tracking (MTT) plays an important role in radar,
especially in surveillance radar systems that must estimate posi-
tions and velocities of moving targets from noisy measurements.
In this field, it is well known that the most probable errors are false
alarms and missing targets. The other important errors are those
due to a single measurement from multiple targets and multiple
measurements from a single target. So far there is no method that
can deal satisfactorily with all these errors simultaneously.

Among many MTT schemes, the three most important meth-
ods areJoint Probabilistic Data Association(JPDA) [1], theEx-
pectation Maximizationapproach [9], and the neural net approach [10,
6]. JPDA is a kind of closed loop system consisting of two sys-
tems: data association and prediction. For each time frame, Kalman
filters predict target centers. Based on the measurements in the
gates formed around the target centers, the data association unit
tries to associate measurements and targets in some optimal man-
ner. After that, the updated measurements are used in the Kalman
filters again. Molnar [9] derived the whole system consisting of
prediction and association units in an unified manner with the EM
method [3]. Defining the association matrix as missing data, the
algorithm can estimate the association matrix for the current mea-
surements. Also the algorithm can determine the association in
a time-recursive manner. Like the Kalman filter technique, this
scheme computes measurement and time updates in parallel. On
the other hand, the neural net approach interprets the constraints
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as separate terms in an energy function that is easily implemented
with a Hopfield-style network.

Our research is confined to the association matrix and the re-
lated energy function as a cost function for optimal constraints. By
adopting the constraints on missing targets and false alarm errors,
the new energy function is more general and natural. Also, it is
fully automatic in that all the Lagrangian parameters are updated
on-the-fly.

2. THE OVERALL STRUCTURE OF MTT

Fig. 1 shows the overall scheme of our target tracking system. It
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Figure 1: The multiple target tracking system.

consists of three parts: acquisition, association, and prediction.
The purpose of the acquisition part is to provide the necessary data
when the system starts from the beginning, a target appears or dis-
appears from the field of scope, or intermittent measurements are
received from a target. Once detected, the targets should be con-
tinuously tracked by the joint cooperation of the association and
prediction parts. The prediction part uses Kalman filters to pro-
vide the association part with the predicted positions of the tar-
gets along with their gate sizes. In the current time frame, the
association part counts the measurements that lie in the gates and
encodes this information in a validation matrix. Utilizing this in-
formation with other additional constraints, the association part
decides which measurements correspond to which targets and rep-
resents the relationships by an association matrix. This informa-
tion is supplied to the Kalman filters for a measurement update



stage for the current time frame. This routine repeats for each time
frame. The crucial part of this algorithm is the association part and
therefore this paper is restricted to this issue.

To begin with, let us denote the state and measurement of the
targett byxt(k) andzt(k), respectively. These can be represented
by the dynamical equation:(

xt(k) = Ft(k � 1)xt(k � 1) +Gt(k � 1)w(k � 1);

zt(k) = Ht(k)xt(k) + v(k);

(1)

whereFt(k),Gt(k), andHt(k) are respectively state transition,
process noise coupling, and measurement matrices. The noise pro-
cessesw(k) andv(k) are mutually independent Gaussian with
zero mean and variancesQ(k) andR(k), respectively.

The Kalman filters calculate the target statex̂t(kjk � 1) and
the measurement prediction covariance matrixSt(k),(

x̂t(kjk � 1) = Ft(k � 1)x̂t(k � 1jk � 1);

St(k) = Ht(k)Pt(kjk � 1)HT
t (k) +R(k);

(2)

for each target and send this information to the association unit.
Note that the measurement update part of Kalman filter is

x̂t(kjk) = x̂t(kjk � 1) +Wt(k)fzt(k)�Ht(k)x̂t(kjk � 1)g;
(3)

and

Pt(kjk) = [I�Wt(k)Ht(k)]Pt(kjk � 1); (4)

where the Kalman gainWt(k) is

Wt(k) = Pt(kjk � 1)HT
t (k)S

�1
t (k): (5)

Next, consider the association part dealing withm measure-
ments andn targets. The relationships between the targets and
measurements are conveniently denoted by the association matrix

 = f!jtjj 2 [1; m]; t 2 [1; n]g. Here,!jt 2 [0; 1] denotes the
probability of the association between measurementj and targett.
Also assume that the measurements areyj(k) for j 2 [1; m] and
the gate centers aregt(k) for t 2 [1; n]. Then, the statêxt(kjk�1)
predicted by the filter is utilized as an input to the association part
to produce the center position of gatet:

gt(k) = Ht(k)x̂t(kjk � 1); t 2 [1; n]: (6)

Next, the measurement prediction covariance matrixSt(k) is
used to produce the validation matrix
0 in the following way. The
distance between a measurementj and the center of gatet is given
by the Mahalanobis distance:

r2jt(k) = [yj(k)� gt(k)]S
�1
t (k)[yj(k)� gt(k)]

T : (7)

If rjt(k) is smaller than the radiusg of the gate, then the mea-
surement is considered in the gate. This relationship can be con-
veniently described by thevalidation matrix!0 = f!0jtj!

0
jt 2

[0; 1]; j 2 [1; m]; t 2 [1; n]g. Since the noise is Gaussian, the dis-
tance from the gate center is directly related with the probability.
Therefore, it is natural to define the elements of the matrix as

!0jt =

(
1

j2�St(k)j1=2
exp(�r2jt=2); if r2jt � 
,

0; otherwise.
(8)

Then, the association part generates the measured position of
the targett by

zt(k) = yj0(k); t 2 [1; n]; (9)

wherej0 = argmaxj !jt. This is the quantity to be supplied to
the prediction filter for measurement update and for further pro-
cessing.

3. MAP ESTIMATES FOR DATA ASSOCIATION

The previous section described the overall structure of our scheme
for multiple target tracking. This section describes the internal
structure of the association unit in detail. One can assume that the
probability space consists of the parameter
 and the observation
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Figure 2: The parameter-measurement spaces.

being and later on will be released from this restriction.
The goal is to find the association matrix!, given the modified

validation matrix!0. Specifically, a MAP estimate!� is given by

!
� = argmax

!

ln p(!j!0): (10)

In this description, the posterior probability can be derived by the
Bayes rule:

p(!j!0) =
p(!0j!)p(!)

p(!0)
(11)

We assume that the conditionalp(!0j!) and the priorp(!)
are all Gibbsian.(

p(!0j!) ,
1
Z1

expf�E(!0j!)g;

p(!) ,
1
Z2

expf�E(!)g;
(12)

whereZ1 andZ2 are partition functions. Substituting (12) into
(10) yields

!
� = argmin

!
fE(!0j!) +E(!)g: (13)

From now on, we must specify the energy functionsE(!0j!)
andE(!) in (13). Let us first look into the relationship between

 and
0. In a parameter-observation model, one can assume that

� 
0 is a Gaussian noise process and therefore

E(!0j!) ,
�

2

nX
t=1

mX
j=1

(!jt � !0jt)
2; (14)

where� is a positive constant.
In order to model the prior of
, we require all the constraints

involved in this quantity. First, a target must be associated with at
most one measurement. If no measurement is assigned for a target,



then it means a missed detection has occurred. This condition can
be nicely represented mathematically by assuming that the sum
of a column must be less than or equal to 1. Conversely, a false
alarm is treated the other way around. The sum of a row must be
less than or equal to 1. If the sum is zero, then it means that the
measurement is a false alarm. Combining these facts together, we
obtain (Pm

j=1 !jt � 1; for t 2 [1; n] ;Pn

t=1 !jt � 1; for j 2 [1; m] :
(15)

These constraints are different from those in previous work [5, 4]
in that it deals with equality constraints. The final constraint is
trivial:

0 � !jt � 1: (16)

The constraints (15) and (16) can be integrated into (14) us-
ing the three Lagrangian multipliers�, �, and� [8] to obtain the
LagrangianL(!):

L(!) =
�

2

nX
t=1

mX
j=1

(!jt � !0jt)
2 �

nX
t=1

mX
j=1

�jt!jt

+
nX
t=1

�t(
mX
j=1

!jt � 1) +
mX
j=1

�j(
nX
t=1

!jt � 1):

(17)

Here,� > 0,�t � 0, �j � 0, and�jt � 0.

4. FINDING OPTIMAL SOLUTION

In order to solve (17), we must determine both the Lagrangian
multipliers�, �, � and the minimizer!�. The Lagrangian can be
represented by the vector equation

L(!) = E(!)+ < G(!); z� > (18)

whereG(!) is a constraint vector including (15) and (16), and
z� is a Lagrange multiplier vector with the same dimension,n +
m + n �m, asG(!). The symbol<;> denotes an inner prod-
uct. According to the generalized Kuhn-Tucker theorem, there is
a z�0 2 Z

�, z�0 � � so that the Lagrangian is stationary at!� and
< G(!); z�0 >= 0. Following this rule, a necessary condition,
that the Lagrangian is stationary at!�, is easily obtained as

!�
jt =

��jt � ��t � ��j + �!0jt
�

; (19)

where!�
jt is the(j; t) element of the solution!�.

The condition< G(!); z�0 >= 0 is equivalent to

nX
t=1

��t (
mX
j=1

!�
jt � 1) +

mX
j=1

��j (
nX
t=1

!�
jt � 1)

+
mX
j=1

nX
t=1

(���jt!
�
jt) = 0: (20)

Since all terms in this equation are non-positive, they must be all
zero. Therefore, this equation can be separated into the following
three equations:8><
>:
��t (
Pm

j=1 !
�
jt � 1) = 0; for t 2 [1; n]

��j (
Pn

t=1 !
�
jt � 1) = 0; for j 2 [1; m]

��jt!
�
jt = 0; for t 2 [1; n], j 2 [1; m]

(21)

Combining (19) and (21), we get8>><
>>:
��t = max(0;

��+
Pm
j=1 (�

�

jt��
�

j+�!
0

jt)

m
);

��j = max(0;
��+

Pn
t=1 (�

�

jt��
�

t+�!
0

jt)

n
);

��jt = max(0; ��t + ��j � �!0jt):

(22)

Unfortunately, (22) must be solved with some iterative scheme. In
particular, we use theGauss-Seidel methodto increase the stability
of convergence.

Algorithm (Iterative Algorithm) Given!0 and�, compute�,
�, and� for each1 � k � n, 1 � j � m, andl � 0.

1. Set the initial values of all Lagrange multipliers to zero.

2. Calculate the Lagrange multipliers sequentially.

�
(l+1)
jt = max(0; �

(l)
t + �

(l)
j � �!0jt);

�
(l+1)
t = max(0;

�� +
Pm

j=1 (�
(l+1)
jt � �

(l)
j + �!0jt)

m
);

�
(l+1)
j = max(0;

�� +
Pn

t=1 (�
(l+1)
jt � �

(l+1)
t + �!0jt)

n
):

3. If the norm of the change of the Lagrange multipliers is
larger than a threshold, letk = k+1 and return to the step
2. Otherwise, go to the step4.

4. Find the minimum point from the Lagrange multipliers,

!jt =
�jt � �t � �j + �!0jt

�
:

One can assign any value to� considering the numerical range
of a computer. Here we set� = 1 without loss of generality.

The computational complexity of the single loop of the algo-
rithm isO(mn). The complete algorithm requireO(�kmn), here
we assume�k is the average number of iteration. Therefore, even if
the number of the tracks and the measurements are increased, the
computational requirement does not increase exponentially.

5. EXPERIMENTAL RESULTS

Experiments were conducted with the new algorithm CODA de-
scribed inAlgorithm using the measurement model described in
(1). TheNearest Neighbor Filter(NNF) [1, 7] and theProbabilis-
tic Data Association(PDA) [2, 1] techniques were also used for
the same model.

As a typical scenario, two crossing targets with initial posi-
tions and velocities as listed in Table 1, were considered. The state

Table 1: Initial Positions and Velocities
target x (km) y (km) _x (km/s) _y(km=s)

1 -4.0 1.0 0.20 -0.05
2 -4.0 -1.0 0.20 0.05

transition and process noise coupling matrices in (1) were, respec-
tively,

Ft(k) =

0
B@
1 T 0 0
0 1 0 0
0 0 1 T
0 0 0 1

1
CA Gt(k) =

0
BB@
T 2=2 0
T 0
0 T 2=2
0 T

1
CCA ;

(23)



whereT is a sampling interval. The state vector was represented
in two dimensional Cartesian coordinates. Without loss of gener-
ality, the sampling intervalT was set at1s. As a noise model, the
covariance matrix of the process noise of targett was

Q(k) =

�
1:2106 � 10�5 0:0

0:0 1:2106 � 10�5

�
(24)

for all k. Similarly the measurement noise covariance matrix was
defined as

R(k) =

�
0:0225 0:0
0:0 0:0225

�
(25)

for all k. Other assumptions were as follows: the probability of
detectionPD was 0.7, a set of clutter densities were0:2, 0:4, and
0:6 km�2, the probability of validationPG was0:99. Finally, the
threshold used for the validation gate was
 = g2 = 9:2.

Monte Carlo simulation was performed forN = 50 runs.
Fig. 3 is one of the many samples that used the clutter density
C = 0:2km�2. We have shown only the trajectories of CODA
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Figure 3: Tracking crossing targets using CODA

because of space limitation. The figure contains three sets of tra-
jectories: actual target trajectories, measurements of target posi-
tions, and the traces calculated by CODA. Extensive experimen-
tation showed that CODA generally tends to successfully separate
two crossing targets in most clutter cases.

To analyze the performance statistically, the track maintenance
rate and RMS position error were observed and are listed in Ta-
ble 2. There is no unique definition for track maintenance rate. So,

Table 2: The tracking performances based on the crossing targets

Clutter Track RMS Position

Density Maintenance Rate Error

C(=km2) (%) (km)
CODA PDA NNF CODA PDA NNF

0.2 86 98 86 0.1393 0.1695 0.1592

0.4 88 100 80 0.1755 0.1608 0.2276

0.6 86 100 86 0.2703 0.1776 0.2889

we considered that a track is lost when there was no measurement

in the gate of the track for at least the last five sampling times.
Track maintenance rate is the percentage of tracks not lost. Our
definition for track maintenance concerns radar operator’s point
of view. RMS position errors is the RMS value of the distances
between the actual and the estimated tracks. Although PDA is
generally the best, CODA performs comparably.

One of advantages of CODA is that, like NNF, it does not need
to know the probability of detectionPD and the clutter densityC.
However, these parameters of a priori knowledge are mandatory
for PDA, and the reason for better performance. Generally CODA
displays better performance than NNF, especially in terms of RMS
error rate, which is improved by 13.9% on average.

6. CONCLUSION

We have derived a scheme called CODA, that computes the data
association by a MAP estimation method and uses a new energy
function. Unlike PDA, this algorithm does not need any additional
information like the probability of detection and the clutter den-
sity. Also our algorithm does not need any parameters like the
balance control coefficients used in the neural network approach.
All the parameters are recursively updated on-the-fly. As a result,
in CODA, there is no need for any trial and error to select val-
ues for the necessary coefficients. These properties are important
for adapting to unknown environments with good performance and
stability.
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