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ABSTRACT

The normalized LMS (N-LMS) algorithm has a dis-
advantage that the convergence rate is much worse
when the input signal is colored. To overcome this,
the a�ne projection algorithm and the block orthogo-
nal projection (BOP) algorithm which are applied the
block signal processing technique to the N-LMS algo-
rithm are proposed although the reason why they are
tough against the coloredness is not given yet. This
paper gives the convergence rate of the BOP algorithm
for colored input signals, which shows the superiority of
the BOP algorithm. To put it concretely, we derive the
expression of the convergence rate, propose an approx-
imation method to calculate it, and con�rm the result
by computer simulations. We also consider the rela-
tion between the block size and the convergence rate
formally and geometrically.

1. INTRODUCTION

The normalized LMS (N-LMS) algorithm [6] is one of
the most popular adaptive algorithm for transversal �l-
ters because of its simplicity and stability. However,
its convergence rate gets much worse when the input
signal becomes colored. In order to overcome the dis-
advantage, the a�ne projection algorithm [3, 7] and
the block orthogonal projection (BOP) algorithm [2]
are proposed which are straightforwardly applied the
block signal processing technique to the N-LMS algo-
rithm. Because they are easily uni�ed and generalized
by considering a general period of update [4], we only
treat the BOP algorithm in this paper for simplicity.

The BOP algorithm uses a set of input vectors in
one update and it has good convergence properties even
for colored inputs. Its e�ect is con�rmed by com-
puter simulations, however, it is not supported theoret-
ically yet. Either, such an interesting phenomenon has
been reported that the improvement of performance
stops when the block size approaches a certain value [5]

though the previous works have shown that the algo-
rithm which has a larger block size performs better
when the input signal is white [4,8]. The di�culties in
theoretical analyses mainly exist in evaluating the ex-
pectation of the inverse matrix used in the algorithm.

In this paper, we give the derivation of the conver-
gence rate of the BOP algorithm when the input signal
is colored. Since its direct calculation is impossible, we
use an approximation which is supported by the law
of large numbers to evaluate the expectation. The re-
sults based on the approximation agree with those by
the computer simulations and explain the reason of the
phenomenon well.

2. DEFINITION OF BOP ALGORITHM

The input signal vector, the tap-weight vector and the
output of the adaptive transversal �lter at the time t
are denoted by x(t), w(t) and y(t), respectively. Then,

w(t+ 1) = w(t) +
x(t)e(t)

kx(t)k2
(1)

shows the N-LMS algorithm that minimizes the square
error e(t)2 = (yo(t) � y(t))2 where yo(t) = wo

T
x(t) is

the desired output and wo is the optimal tap-weight
vector, respectively.

Instead of the square error, the Block Orthogonal
Projection (BOP) algorithm with the block sizemmin-
imizes the norm of the error vector

e(t) = [e(t); : : : ; e(t�m+ 1)]T 2 Rm

and is written as

w(t+ 1) = w(t) +X+(t)e(t) (2)

where X+(t) = X(t)(X(t)TX(t))�1 is the transposi-
tion of the Moore-Penrose generalized inverse matrix
of X(t) = [x(t); : : : ;x(t�m+ 1)] [2].

From the geometrical point of view, the N-LMS al-
gorithm projects the di�erence vector "(t) = w(t)�wo



to the hyperplane made from the input signal x(t) and
the BOP algorithm does to the orthogonal complement
of the m input signal vectors x(t);x(t � 1); : : : ;x(t �
m + 1). Its name results from this property. Since
the BOP algorithm uses m inputs in one update, the
period of the update is set to m. When set to 1, it
is called the a�ne projection algorithm [3, 7] and any
natural number is available. Their geometrical relation
is elucidated in [4], however, this paper treats only the
BOP algorithm for simplicity.

3. CONVERGENCE RATE OF BOP ALGORITHM

To evaluate the convergence speed, it is enough to know
how much the magnitude of the di�erence vector "(t)
decreases. So, we consider the convergence rate de�ned
as the expectation of the rate k"(t+ 1)k=k"(t)k in the
following. Since the di�erence vectors "(t+1) and "(t)
satisfy

"(t+ 1) = (IN �X+(t)X(t)T )"(t);

we evaluate the maximum eigenvalue �max of the ex-
pectation of IN �X+(t)X(t)T . The convergence rate

is written as �
1=m
max since the update is done for every

m times. Note that the independence of X(t) and "(t)
is implicitly assumed here which makes the problem a
little easier. And we also assume that the input signal
is stationary.

Since the i; jth element of X(t)TX(t) is written as

N�1X
k=0

x(t� i� k)x(t � j � k);

it can be approximated by its average Ex [x(t� i)x(t� j)]
using the law of large numbers. So, we adopt the ap-
proximation

Ex
h
X(t)

�
X(t)TX(t)

�
�1

X(t)T
i

� Ex
�
X(t)(Ex

�
X(t)TX(t)

�
)�1X(t)T

�
(3)

to calculate �max. This method is available even when
the input is colored because only the second or lower
order statistics appear in Eq.(3). A similar approxi-
mation is used in [1] where the whiteness of the input
vector is assumed though.

De�ne an n� n matrix Rn as

Rn = Ex
�
xn(t)

T
xn(t)

�
;

xn(t) = [x(t); : : : ; x(t� n+ 1)]:

Then, since Ex
�
X(t)TX(t)

�
= NRm,

P =
1

N
Ex

�
X(t)R�1m X(t)T

�
(4)

and the i; jth element Pij is written as

Pij =
1

N
Ex

�
xm(t� i)TR�1m xm(t� j)

�
(5)

where xm(t) = [x(t); : : : ; x(t�m+1)]. Using trAB =
trBA,

Pij =
1

N
Ex

�
xm(t� i)TR�1m xm(t� j)

�

=
1

N
tr
�
Ex

�
xm(t� i)xm(t� j)T

�
R�1m

�

=
1

N
tr
�
Ex

�
xm(t� (i� j))xm(t)

T
�
R�1m

�

and then

Pij =
1

N
tr(Rm(i� j)R�1m ) (6)

where Rm(n) = Ex
�
xm(t� n)xm(t)

T
�
, which means

that P is determined by only the autocorrelation func-
tion rn.

4. BOP ALGORITHM AND N-LMS ALGORITHM

The convergence rate derived above has much compli-
cated form, however, when the input signal is white,
it is easily derived as follows: Rm is the null matrix,
of course, and the diagonal of Rm(i) is zero if i 6= 0.
Hence, P = m

N IN and �max is
N�m
N . In this section, we

consider the geometrical relation of the BOP algorithm
and N-LMS algorithm according to [4], and support the
result in the previous section from another side.

For simplicity, we at �rst consider the case m = 2.
Let the input vectors be denoted by x1 and x2, which
are chosen uniformly and independently. Since each
input vector makes a hyperplane, we denote the hy-
perplane itself by x1 or x2. When x1 is given, the
N-LMS algorithm projects the di�erence vector " to
the hyperplane x1. And the BOP algorithm projects
" to the intersection of x1 and x2. Here, the projec-
tion to the intersection coincides the point given by
projecting " to x1 and projecting it to the intersec-
tion in the hyperplane x1. It means that we can re-
gard x2 as a hyperplane in the hyperplane x1. Since
x1 and x2 are independent and the hyperplane x1 is
N � 1-dimensional, the convergence rate of the BOP
algorithm is the square root of the product of those of
the N -dimensional and the N � 1-dimensional N-LMS
algorithms. This consideration is easily extended to
any block size and it is found that the BOP algorithm
with the block size m is equivalent to the combination
from the N -dimensional to the N �m+1-dimensional
N-LMS algorithms when the input is white.



The convergence rate of the k-dimensional N-LMS
algorithm derived by the above theory is k�1

k . Since

N � k

N
=

N � 1

N

N � 2

N � 1
� � �

N � k

N � k + 1
;

the theory is also supported from their geometrical re-
lation.

5. COMPUTER SIMULATIONS

In order to con�rm the theory numerically, we have
done some computer simulations. Fig. 1 shows the rela-
tion between the number of iterations and the squared
error when the transversal �lter for system identi�ca-
tion with 20 taps learns using the BOP algorithm with
m = 5 with the input signal

x(t) =

6X
i=0

u(t)

where u(t) is white Gaussian. In Fig. 1, the *'s and the
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Figure 1: Squared Errors (Colored Inputs)

dot-line respectively show the average of 30 trials and
the theoretical value. The slope of the theory agrees
with that of the simulations as iterations increase. For
next discussion, the experimental result of the N-LMS
algorithm is shown by the o's and the solid line means
the theoretical result when the input is white.

6. BLOCK SIZE AND CONVERGENCE RATE:
FORMAL VIEW

We compare the results of Fig. 1 with the results of
white inputs' case (Fig. 2) where the o's and *'s show
the experimental results of the N-LMS and BOP al-
gorithms, respectively. The two �gures clearly show
that the di�erence of the slopes in white inputs' case
is much smaller than the other, which means the block
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Figure 2: Squared Errors (White Inputs)

implementation is less e�ective when the input signal
is white. We consider about this phenomenon in this
section.

From Eq.(6),

Pii =
1

N
tr(Im) =

m

N

is easily derived because Rm(0) = Rm. This means
that the diagonal elements are always m=N therefore
P can be rewritten as

P =
m

N
R̂m

where R̂m has diagonal elements with unity. Denoted
the minimum eigenvalue of R̂m by �̂m, the convergence
rate of the BOP algorithm is written as

�
1�

m

N
�̂m

�1=m
:

By Taylor expansion with respect to (�̂m=N), the above
is rewritten as

1�
�̂m
N

�
m� 1

2

�̂2m
N2

+O
�
�̂3m=N

3

�
: (7)

When the input is white, R̂m becomes Im as shown in
Sec.4, therefore �̂m is invariant to m. Hence, the e�ect
of the increase of m is only the order of 1=N2 which
appears in the third term. On the other hand, when
the input signal is colored, R̂m itself changes by the
increase of m and �̂m changes, too. Hence the increase
of m a�ects with the order of 1=N which appears in the
second term. In fact, the results of the computer simu-
lations above have shown that the minimum eigenvalue
of R̂1 is 0:0223 and the rate of the minimum and the
maximum is 292, and those of R̂5 are 0:237 and 8:65,
respectively.

The consideration in this section means that the
main reason why the BOP algorithm is e�ective is not



that the number of examples used in one update in-
creases itself but that the spread of the eigenvalues is
corrected and that the increase of the block size is need-
less after the spread is corrected enough. This conclu-
sion does not contradict with the more precise theo-
retical analyses in [4, 8] because the increase is surely
e�ective though slightly.

The future work should elucidate the relation be-
tween the change of R̂m and the statistical properties
of the input signal.

7. BLOCK SIZE AND CONVERGENCE RATE:
GEOMETRICAL VIEW

In this section, we consider about the phenomenon
from the geometrical point of view. Assume that the
input signal x(t) is the output of k-AR model (k <
m)driven by white Gaussian noise, that is,

x(t) =

kX
i=1

aix(t� i) + u(t): (8)

Consider here N � k vectors ai; i = 0; : : : ; N � k � 1
that

ai = (0i; 1;�a1;�a2; : : : ;�ak; 0N�k�1�i)
T
2 RN

where 0j is the j-dimensional null vector. From Eq.(8),

the inner product of ai and x(t) = (x(t); : : : ; x(t�N + 1))
T

is u(t�i). So, if u(t) has a small variance or ai is rather
large, it is neglectable and x(t) is orthogonal to the vec-
tors ai; i = 0; : : : ; N�k�1. Since x(t) is perpendicular
toN�k vectors for any t, the space spanned by the vec-
tors x(t);x(t�1); : : : ;x(t�m+1) is only k-dimensional.
Because the BOP algorithm projects the di�erence vec-
tor to the complement of the space, the convergence
properties do not change even if m increases. That is
why the increase of the block size becomes less e�ec-
tive when m is enough large. In practice, even if u(t)
is not so small and the spanned space does not degen-
erate, the vectors x(t); : : : ;x(t) are extremely biased
and then the convergence does not becomes faster. To
analysis the relation of the bias and the convergence
rate is still an open problem.

8. CONCLUSION

The BOP algorithm is said that its convergence speed
does not decrease even if the input is colored, though
there are no explanations for it. We derived the con-
vergence rate for colored inputs using an approximation
supported by the law of large numbers. The results of
computer simulations agree with the theoretical values.

We consider the e�ects of the block implementation
in the cases that the input signal is colored from the
formal and geometrical viewpoints. The considerations
explain the phenomenon well, however, they are still
incomplete and quantitative analyses should be given
in the future.
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