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ABSTRACT

Direct computation of CWT using FFT requiresO(Nlog2N)
operations per scale, whereN is the data length. The Shensa
algorithm is a fast algorithm to compute CWT that uses only
O(N) operations per scale. The application of the algorithm
requires the design of a bandpass and a lowpass filter for a
given mother wavelet function. Previous design method in-
volves multi-dimensional numerical search and is computa-
tionally intensive. This paper proposes an iterative method
to design the optimum filters. It computes in each iteration
least-squares solutions only and does not need numerical
search. The proposed filter design method is corroborated
by simulations.

1. INTRODUCTION

Wavelet transform is a powerful technique to analyse non-
stationary signals. It has found application in many areas
including image compression, computer vision, signal anal-
ysis, sonar and radar, and many others [1, 2, 3, 4]. The con-
tinuous wavelet transform (CWT) of a signals(t) is defined
as [4]
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where (t) is a mother wavelet function,a and� are the
scale and translation parameters, and the superscript� de-
notes complex conjugate. The signals(t) can be recon-
structed from the transform coefficients via [4]
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provided that the mother wavelet satisfies the adimissibility
condition

C =

Z 1

�1

	(f)

jf j df < 1 : (3)

The CWT is often evaluated at dyadic scalea = 2j and
integer translation� = n. If s(t) is a bandlimited sig-
nal, it can be expressed as a weighted sum of its samples
s(n). Hence direct computation of CWT using FFT re-
quiresO(N log2N) operations per scale, whereN is the
data length. This is expensive in practice.

The Shensa algorithm is a fast algorithm that computes
dyadic scale CWT at a cost of onlyO(N) operations per
scale. The algorithm is defined by a bandpass filterh and a
lowpass filterg. The mother wavelet function is fixed once
the filters are chosen.

Many practical applications such as EEG signal anal-
ysis require the computation of CWT using some mother
wavelet function that possesses certain properties of inter-
est. In such a case, the Shensa algorithm needs to designh

andg for a given mother wavelet function (t). Hoet al. [5]
have shown that the optimum bandpass filterh can be found
by least-squares (LS) minimization. The design of the opti-
mum lowpass filterg, however, requires multi-dimensional
numerical search and is computationally expensive. This
paper proposes an iterative method to design the two filters.
The method involves LS solutions only and does not require
numerical search.

The paper is organized as follows. Section 2 is a brief
review of the Shensa algorithm [6] and the previous filter
design method [5]. Section 3 presents the new filter design
method. Section 4 contains the simulation results to corrob-
orate the proposed technique, and Section 5 is the conclu-
sions.

2. THE SHENSA ALGORITHM AND FILTER
DESIGN

Figure 1 is the block diagram representation of the Shensa
algorithm [6]. The filtersq, h andg are the initialization
filter, bandpass filter and lowpass filter respectively. The in-
put signal in discrete form first passes through the initializa-
tion filterq, and then stages of bandpass and lowpass filters.
The bandpass filter output at stagej is the approximation of
decimated CWT samplesCWT (2j ; 2j�1n). The lowpass
filter output passes onto the next stage for computing CWT
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Figure 1: The block diagram of Shansa algorithm to com-
pute decimated CWT samples.

at the next dyadic scale. The algorithm can be extended to
compute undecimated CWT samples. The implementation
block diagram in this case is shown in figure 2 [6]. It can
be shown that the complexity to computeN undecimated
CWT samples using the Shensa algorithm isO(N) opera-
tions per scale.

The bandpass filter in the algorithm is related to the
wavelet function (t) by

 (t) = 2

LhX
k=�Lh

h�(k) �(2t+ k) (4)

where�(t) is the scaling function defined by the lowpass
filter:

�(t) = 2

LgX
k=�Lg

g�(k) �(2t+ k) (5)

and2Lh + 1 and2Lg + 1 are the lengths ofh andg re-
spectively. Equations (4) and (5) are called the two-scale
equations for the wavelet and the scaling functions. The
impulse responses of the lowpass filter are the samples of
lowpassed scaling function [7]

q(k) =

Z
��(t� k)sinc(t) dt (6)

wheresinc(t) = sin(�t)=(�t). Once the bandpass and
lowpass filters are chosen, (t) will be fixed. Here, we are
interested in finding the filter pair when a mother wavelet
function d(t) is given.

Letwo(t) be the equation error from (4):

wo(t) =  d(t)� 2

LhX
k=�Lh

h�(k)�(2t + k) : (7)

It is shown in [5] that the mean-square CWT computation
error of the Shensa algorithm at scale2j is

�j = 2j
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Figure 2: The block diagram of Shensa algorithm to com-
pute undecimated CWT samples.

wherer(�) is the autocorrelation function ofs(t). In fre-
quency domain,

�j =

Z 2j�1

�2j�1
Ps
�
f=2j

� jWo(f)j2 df (9)

wherePs(�) is the power spectral density of the signal, and
Wo(f) is the Fourier transform ofwo(t) in (7):

Wo(f) = 	d(f)�H�(f=2)�(f=2) : (10)

Defineeh =
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and

h = [h(Lh) ; h(Lh � 1) ; ::: ; h(�Lh) ]T so thatH(f=2) =
eThh. Let j be the stage such that the mean-square error
(MSE)�j is largest. Then the mini-max solution ofh that
minimizes (9) is [5]
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Putting (11) into (9) yields the minimum MSE:
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Note that bothh and� are dependent ong (c.f. (11)
and (5)). The optimum lowpass filterg is found by multi-
dimensional numerical search to further minimize�j;min.

3. NEW FILTER DESIGN METHOD

The previous filter design method is very computationally
intensive because of the multi-dimensional search forg. We



shall propose a more computationally efficient method for
the filter design.

The Fourier transform of (5) is

�(f) = G�(f=2)�(f=2) (13)

where

G(f) =
X

g(k)e�j2�fk (14)

is the discrete Fourier transform of the lowpass filterg. Hence
iterating (13) gives

�(f) =

1Y
k=1

G�(f=2k) : (15)

Substituting (13) into (10) forms

Wo(f) = 	d(f)�H�(f=2)�(f=4)G�(f=4) (16)

so that (9) can be expressed as

�j =

Z 2j�1

�2j�1
Ps
�
f=2j

�
j	d(f)�H�(f=2)�(f=4)G�(f=4)j2 df: (17)

Let eg =
�
e�j�fLg=2 ; e�j�f(Lg�1)=2 ; ::: ; ej�fLg=2

�T
and g = [ g(Lg) ; g(Lg � 1) ; ::: ; g(�Lg) ]T . Then
G(f=4) = eTg g. The lowpass filter coefficients must ful-
fil certain constraints. In order to guarantee convergence of
(15), the sum of the elements ofg must be unity. In ad-
dition, imposing a zero ofg at f = 0:5 will improve the
smoothness in CWT coefficients. Some other contraints on
g may be needed, depending on applications. Denote, in
general, the set of linear constraints on the lowpass filter as
Ag = b, whereA is a matrix andb is a vector. Now sup-
poseH(f=2) is known, the constrained LS solution ofg
that minimizes (17) is

g = ~g +FAy(AFAy)�1(b�A~g) (18)

where
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and

~g = F
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is the unconstrained solution.
The new filter design method is described as follows:

Initialization: select an initialg
Repeat

1. compute�(f) from (15)
2. designh using (11)
3. designg using (18)-(20)

until convergence.
The new design method is more computationally effi-

cient than the previous technique. It involves only LS so-
lutions and does not require multi-dimensional numerical
search. At present there is no proof regarding global conver-
gence of the method. However, in all the simulation trials
the algorithm converged to the global minimum.

4. SIMULATIONS

The mother wavelet functions used in the simulation study
were the Morlet wavelet:

 (t) = e�t
2=2�2e�j2�fot

	(f) =
p
2��e�2�

2�2(f�fo)
2

(21)

and the Second Derivative of a Gaussian wavelet:

 (t) = (1� t2)e�t
2=2

	(f) = (2�)5=2f2e�2�
2f2 ; (22)

wherefo = 0:6 and� = 0:2.
The length ofh was 33 and that ofg was 5. The initial

g was set to[1 4 6 4 1]T =16, which corresponds to a B-
spline scaling function. The lowpass filter was constrained
to have a unity gain at zero frequency and a zero gain at fre-
quency=0.5. Furthermore, it was also constrained to be real
and symmetric. The number of stages for CWT computa-
tion was 8.

Figure 3 shows the decrease in MSE as the number of
iteration increases. The mother wavelet function was Mor-
let. The input signal was a unit impulse, and the maximum
MSE occurred in the last stage, andj was set to 8 in com-
puting the LS solutions. The method converges in about 25
iterations and reaches a minimum MSE at -35dB. The dot-
ted line is the minimum MSE found by numerical search.
It is clear that the proposed method converges to the global
minimum.

Figure 4 is the case when the mother wavelet function
was Second Derivative of a Gaussian. The proposed method
reaches the global minimum MSE of -62dB in about 25 it-
erations.

Figure 5 is the result when the input was a correlated
AR(1) process given bys(k) = 0:85s(k�1)+�(k), where
� is a white random process whose power is such that the
power ofs(k) is unity. The mother wavelet function was
Morlet. The largest MSE occurred in the last stage andj
was set to 8 in computing the LS solutions. Again, the pro-
posed method converges at about 25 iterations and reaches
a minimum MSE of -24dB. The case for the Second Deriva-
tive of Gaussian wavelet function is given in figure 6. The
observations are similar with the Morlet wavelet case.
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Figure 3: Convergence curve of the proposed method, unit
sample input and Morlet wavelet.
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Figure 4: Convergence curve of the proposed method, unit
sample input and Second Derivative of Gaussian wavelet.

5. CONCLUSIONS

We have proposed a new method to design the bandpass
and lowpass filters in the Shensa algorithm for the compu-
tation of CWT when a mother wavelet function is given.
The method is iterative and requires only LS solution com-
putations. The convergence and validity of the method were
confirmed by simulations.
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