
SOURCE-LEVEL LOOP OPTIMIZATION FOR DSP CODE GENERATION

Bogong Su

Dept. of Computer Science
The William Paterson University

of New Jersey
Wayne, NJ 07470, USA

email: bsuwpc@frontier.wilpaterson.edu

Jian Wang

Real Time Speech Systems
Nortel Montreal Lab.

Montreal, QC, Canada, H3E 1H6
email: jiwang@nortel.ca

Andrew Esguerra

Dept. of Computer Science
The William Paterson University

of New Jersey
Wayne, NJ 07470, USA

email: njd44@gw.wilpaterson.edu

ABSTRACT

The performance of current C compilers for DSP is almost
unacceptable. One of the most important reasons is the
lack of implementing software pipelining. This paper
presents a remedy called source-level loop optimization.
DSP programmers can use source-level loop optimization
first then input its result to the DSP compiler to obtain
better assembly code.  The implementation of source-level
loop optimization is easier than that of software
pipelining. The preliminary result with the DSP compiler-
challenge C code shows that source-level loop
optimization is a portable and efficient approach. The
detailed method and working examples are presented.

1. INTRODUCTION

Instruction-level parallelism(ILP) [6] has been used
extensively in general purpose microprocessors. It is a set
of design techniques that speed up a program by executing
in parallel several operations [3]. Recently a VLIW-like
DSP, TMS320C6x, has been developed, its hardware can
offer ILP for two multiplications, six ALU operations and
several memory access operations. It also adopts some
software optimization technologies such as software
pipelining from general purpose optimizing compilers [2].
On the other hand, many of the popular DSPs’ hardware
provides some sort of ILP, so-called parallel instruction.
For example, the Motorola MC 56300 allows parallel
move operations. The scheduling and coalescing phase in
its compiler can take advantage of this parallelism and
produce the better code.

Since the sizes of DSP applications are getting bigger and
reducing the time-to-market a new DSP product becoming
more important, the more efficient high level language
compilers, such as C compilers, are urgently expected.
However, the implementation of some complicated
optimization techniques such as software pipelining in the

backend of DSP compilers, has been a challenge due to
the small size of register files of almost all DSP
processors. The performance of current C compilers for
DSPs is almost unacceptable. The overhead of compiled
codes, in terms of clock cycles and code space, falls
typically in the range of 2 to 8 [4,5]. To solve this
problem, besides improving DSP compilers, it is
necessary to study the methods in which to write a better
C program so that the current DSP compilers can generate
more efficient codes. [1] provides some useful
suggestions. [4] shows an example of Vector Multiply that
Analog Devices uses software pipelining at the source
level, however it is just a tuning for an individual program
and there is no detailed method presented. In this paper
we present a so-called  source  level loop optimization
approach for DSP compilers to produce more efficient
codes. We also analyze the result of the preliminary
experiment on the DSP compiler-challenge code.

2. BASIC CONCEPT

Software pipelining is extensively used in optimizing
compilers for microprocessors as an efficient instruction
level loop optimization technique[6]. Figure 1 illustrates
its basic idea. Fig.1(1) and Fig.1(2) are a loop body and
its data dependence graph(DDG) respectively. The critical
path is the longest path through the DDG. The length of
critical path determines the minimum length of the result
of scheduling and coalescing. In this simple example it
equals three. For further optimization, we can unroll the
loop body and then pipeline the unrolled bodies as shown
in Fig.1(3) and Fig.1(4) respectively. Fig.1(5) is the new
DDG for the operations in the frame in Fig.1(4). There is
only data anti-dependency, shown by dotted lines. Using
this method all data dependencies are removed. Data anti-
dependencies can be eliminated when reading a register
earlier than writing to the same register or register
renaming technique is adopted. Therefore, the critical path
length is reduced to one and the body length of the
software pipelining result is also one as shown in Fig.1(6).



From this example, we know that software pipelining can
be used to remove data dependency in the loop body.
Hence reducing the critical path length and the loop body
length. However, most current DSP C compilers have not
implemented software pipelining due to the above-
mentioned reasons. Fig.2(1)is the typical structure of a
DSP compiler. Our approach is illustrated in Fig.2(2):
there is a software pipelining based loop transformation at
the source level to get the improved C code, i.e. some data
dependency in the loop body can be removed. It provides
more opportunity to the scheduling and coalescing phase
in DSP compilers.

1  u=x[i] 1.1  u=x[0]
2  v=u*t 1.2  v=u*t 2.1  u=x[1]

3  y[i]=v 1.3  y[0]=v 2.2  v=u*t 3.1  u=x[2]
2.3  y[1]=v 3.2  v=u*t

3.3  y[2]=v

(1) a loop body (4) Pipelining the unrolled bodies

        1 1.3

 2 2.2

 3 3.1

      (2) DDG of            (5) DDG after
    original loop body           software pipelining

1.1  u=x[0]
1.2  v=u*t
1.3  y[0]=v
2.1  u=x[1]

2.2  v=u*t y[i]=v v=u*t u=x[i+2]
2.3  y[1]=v
3.1  u=x[2] (6) new loop body
3.2  v=u*t
3.3  y[2]=v

(3) unrolling loop

Figure 1    Software Pipelining

3. SOURCE-LEVEL LOOP OPTIMIZATION

The basic idea of source-level loop optimization is
illustrated in Figure 3. Fig.3(1) is the original C source
code which is a loop taken from the FIR program.

(1) Re-writing the loop body of C source code.
Some C statements include several operations which can
not be executed at the same time due to data dependency,
e.g. there is only one statement in the loop body in
Fig.3(1) which includes two load operations from memory
into registers and at least one arithmetic operation. This
statement can not be executed within one cycle.  These
kind of statements must be decomposed into several
operations as shown in Fig.3(2).

(2) Building the DDG of the re-written code.
From the DDG in this example as shown in Fig.3(3), it is
obvious that the critical path length is two.

C   source code       C   source code

⇓ ⇓
↓ Source Level Optimizing

Front End ⇓

↓ ↓
Code Selection Front End

↓ ↓
Resource

Allocation
 Code

Selection
↓ ↓

Scheduling &
Coalescing

Resource
Allocation

↓ ↓
Software

Pipelining
Scheduling &

Coalescing
↓ ↓
⇓ ⇓

DSP assembly
code

DSP assembly
code

(1) Traditional Structure  (2) New approach

Figure 2      DSP Code Generation

(3) Software pipelining the re-written loop body.
We use a simple software pipelining technique [7] called
URPR: unrolling the loop body first, then pipelining the
unrolled loop bodies, rerolling the result of pipelining to
obtain a new loop body finally. The second step,
pipelining the unrolled loop bodies is much simpler than
that of regular software pipelining in optimizing
compilers. We consider  the inter-body data dependency
only and disregard the resource conflict problem. There
are two bodies to be pipelined in Fig.3(4). The operations
within the frame consist of the new loop body. It is easily
ascertained that the data dependency has been removed in
the new loop body, i.e. the critical path length is only one.



The operations before and after the new loop body are
called prelude and postlude respectively.

fir_inner(const short
array[], const short
coeff[], short output[])

x=array[j];
h=coeff[j];
sum+=x*h;

{ (2) Re-written loop body
int ,j,sum;
sum=0;
for(j=0;j<100;j++)

{ x=array[j] h=coeff[j]

sum+=array[j]*coeff[j]

} sum+=x*h

}

(1) a sample program (3) DDG of re-written loop body

x=array[j] h=coeff[j] {

sum+=x*h x=array[j] h=coeff[j] int j,sum,x,h;

sum+=x*h sum=0;
x=array[0];
h=coeff[0];

(4) New loop code after source level
optimization

for(j=1;j<100;j++)

{
sum+=x*h;
x=array[j];
h=coeff[j];
}
sum+=x*h;
}

(5) Improved
Source code

move y:(r0)+,x0 asr #23,a,a
asr #23,a,a  y:(r4)+,y0 mac +x1,x0,a y:(r0)+,x1
mac +x0,y0,a asl #23,a,a y:(r4)+,x0

asl #23,a,a

(6) DSP assembly code
of original loop

(7) DSP assembly code
of improved loop body

Figure 3     Example of Source-Level Loop Optimization

(4) Obtaining the improved C source code.
Since C language is not a parallel programming language,
we must re-write the new loop body in Fig.3(4) into a
regular sequential C code, shown in Fig.3(5). However,
the C compiler can determine that there is no data
dependency in the loop body. Finally it is necessary to
combine the prelude and postlude parts into the improved
C code and adjust the index to maintain the semantic
correctness.

By examining Fig.3(7), the DSP assembly code produced
by the C compiler for the Motorola DSP 56300 we find
that the loop body length is three instead of one due to the
extra shift operations before and after mac operation to
avoid overflow. Compared with the DSP assembly code of
the original loop body shown in Fig.3(6), a 25% speed
increase has been attained by using source-level loop
optimization.

4. PRELIMINARY RESULTS

To verify our approach we have chosen all the  DSP
compiler-challenge C codes from [4], except the FIR
Filter with Redundant Load Elimination which is a loop-
unrolled version of FIR Filter. Their assembly code
generated by current commercial DSP C compilers carry a
big overhead. Fig. 4 presents the example of Dot Product,
one of the compiler-challenge programs.

Table 1 uses the length of the innermost loops of the
assembly code to compare the performance. The table lists
the results generated by Motorola DSP 56300 compiler,
the results by using source-level loop optimization before
Motorola compiler and the “Optimum” code picked
from[4] which is produced by the Tasking compiler from
modified C source code. Tasking applies some machine
dependent modifications, beside re-assigning the memory
space allocation it also changes the variable type from
short to fract to eliminate shift operations and uses
pointers instead of arrays.

Table 1     Performance Comparison
(Length of Innermost Loop)

PROGRAMS
Motorola
Compiler

Source -level
Optimization
+   Motorola

Compiler

"Optimum"
Code

Dot Product 11 6 3
Vector Multiply 7 6 3
FIR Filter 12 12 10
Lattice Synthesis 17 16 7
IIR Filter 31 28 12
Vector Codebook Search 20 15 16
JPEG 25 20 10

Table 1 shows that the source-level loop optimization can
obtain an average of 17% performance improvement for
those seven compiler-challenge programs. There is no
improvement for FIR program because the register
allocation in Motorola DSP compiler is quite poor. It
generates new data dependence in the assembly code of
the source-level optimization result, i.e. the critical path
length can not be reduced. In Lattice Synthesis and IIR
Filter programs, source-level optimization eliminates



some data dependence. However, the result length of the
source-level optimized assembly code is longer than that
of the original assembly code due to the poor register
allocation problem[8], therefore limiting the performance
improvement of these two programs.

Though there is still an average of 82% overhead for these
seven compiler-challenge programs by comparing the
results of source-level optimization with the “Optimum”
codes it is possible to get further improvement by
applying some other source level optimization approaches
e.g. using pointers instead of arrays.

int mac(const short *a, const short *b, int sqr, int *sum)
{ {
int i; int i,x,y;
int dotp = *sum; int dotp = *sum;
for(i=0;i<150;i++) x=a[0];
{ y=b[0];
dotp+=b[i]*a[i]; for(i=1;i<150;i++)
sqr+=b[i]*b[i]; {
} dotp+=y *x;
*sum=dotp; sqr+=y * y;
return sqr; x=a[i];
} y=b[i];

}
(1) Original C Code dotp+= y * x;

sqr+= y * y;
move y:(r0),x0 *sum=dotp;
move y:(r4)+,y0 return sqr;
move y:(r6+3),a }
asr #23 a,a (2) Improved C Code
mac +x0,y0,a y:(r0),x0
asl #23,a,a y:(r0)+,y0 asr #23,a,a
move a1,y:(r6+-3) y:(r6+-4),a mac +x0,y0,a
asr #23,a,a asl #23,a,a
mac +x0,y0,a asr #23,b,b y:(r0)+,y0
asl #23,a,a mac +x0,x0,b y:(r4)+,x0
move a1,y:(r6+-4) asl #23,b,b

(2) Innermost loop body  from
original C code

(4) Innermost loop body
from improved C code

Figure 4     Dot Product Program

5. CONCLUSION

Source-level loop optimization is a portable and efficient
approach to improve the DSP assembly code generated by
current commercial DSP compilers which do not
implement software pipelining. DSP programmers can
develop a machine dependent preprocessor or conduct the
optimization manually to obtain code improvement.
Compared with conducting the software pipelining

manually on the assembly code level, the source-level
loop optimization is far easier because the source code is
simpler and resource conflict checking can be omitted.

We can combine source-level optimization with other
optimizing approaches to obtain further performance
improvement, and extend this idea to the optimization of
nested loops[9].

6. ACKNOWLEDGMENTS

This work was partially supported by the Faculty Summer
Research Award 1998 from the Center for Research,
College of Science and Health, The William Paterson
University of New Jersey.

7. REFERENCES

[1] A. Davis, “Tips for Writing More Efficient DSP C
Code”, EDN, June 5, 1997, p.98.

[2] T. Dillon, “The Use of Software Pipelining in
Developing DSP Algorithms for the TMS320C6x”,
Proc. of ICSPAT97, Sept. 1997, 834-837.

[3] P. Faraboschi, G. Desoli, and J. Fisher, “The Latest
Word in Digital and Media Processing”, IEEE Signal
Processing, vol. 15, No. 2, March 1998, 59-85.

[4] M. Levy, “C Compilers for DSPs - Flex Their
Muscles”, EDN, June 5, 1997, 93-107

[5] P. Marwedel, “Code Generation for Core Processors”,
Proc. of DAC-97, 1997,232-237.

[6] B. Rau and J. Fisher, “Instruction-level Parallel
Processing: History, Overview, and Perspective”, The
Journal of Supercomputing, 7(1), Jan. 1993.

[7] B. Su et al, “URPR - an Extension of URCR for
Software Pipelining”, Proc. of MICRO-19, 1986, 104-
108.

[8] B. Su et al, “A Study of Source-level Loop
Optimization for DSP Code Generation”, Technical
Report, College of Science and Health, William
Paterson University, Aug. 1998.

[9] J. Wang and B. Su, “Software Pipelining of Nested
Loops for Real-time DSP Applications”, Proc. of
ICASSP98, May, 1998.


